• Title/Summary/Keyword: conventional cone

Search Result 187, Processing Time 0.028 seconds

Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

  • Liang, Shuran;Xie, Xianju;Wang, Fan;Chang, Qiao;Wang, Hongmei;Bai, Yuxing
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.346-355
    • /
    • 2020
  • The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized mini-plates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400-500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Direction Relation Representation and Reasoning for Indoor Service Robots (실내 서비스 로봇을 위한 방향 관계 표현과 추론)

  • Lee, Seokjun;Kim, Jonghoon;Kim, Incheol
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.211-223
    • /
    • 2018
  • In this paper, we propose a robot-centered direction relation representation and the relevant reasoning methods for indoor service robots. Many conventional works on qualitative spatial reasoning, when deciding the relative direction relation of the target object, are based on the use of position information only. These reasoning methods may infer an incorrect direction relation of the target object relative to the robot, since they do not take into consideration the heading direction of the robot itself as the base object. In this paper, we present a robot-centered direction relation representation and the reasoning methods. When deciding the relative directional relationship of target objects based on the robot in an indoor environment, the proposed methods make use of the orientation information as well as the position information of the robot. The robot-centered reasoning methods are implemented by extending the existing cone-based, matrix-based, and hybrid methods which utilized only the position information of two objects. In various experiments with both the physical Turtlebot and the simulated one, the proposed representation and reasoning methods displayed their high performance and applicability.

A study on size variation of quadrangular pyramid structure according to input voltage of solenoid indentation system (솔레노이드 전압변화에 따른 사각뿔 구조체의 크기변화 경향 분석에 관한 연구)

  • Moon, Seung Hwan;Jeong, Ji-Young;Han, Jun-Se;Choi, Doo-Sun;Choi, Sung-Dae;Jeon, Eun-chae;Je, Tae-Jin
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.40-44
    • /
    • 2019
  • The light diffusion component spreads the light from one point evenly over a large area. Various types of light diffusion parts such as films and lenses are applied in the high-tech industries such as LCD display devices, lighting devices, and solar energy generation. Among these, a diffuser sheet (Diffuser Sheet) has a function to uniformly distribute the light, and various studies have been conducted to improve its function. The shape of the conventional light diffusion pattern is mainly made of a dot or hemispherical shape. In this study, a rectangular cone-shaped structure having a light diffusion function and an advantage of controlling the angle of refraction of light was fabricated by using a solenoid indentation process. The change in shape of the indentation structure was analyzed.

A Study on Fire Prevention Capability Performance Evaluation of the Phosphate Flame Retardant Honeycomb Core (인계 난연 허니컴 코아의 방화성능평가에 관한 연구)

  • Moon, Sung-Woong;Lim, Kyung-Bum;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.72-77
    • /
    • 2010
  • Honeycomb core structure with its excellent stiffness and strength is being utilized in many fields such as interior building material. Because it is inexpensive and renewable, honeycomb paper production is economically and environmentally helpful. However, the paper needs to be fireproofed because it is vulnerable to fire. In this study, we have undergone the performance evaluation process of the honeycomb paper which is widely used as interior material of a fire door and packing material. Four kinds of honeycomb (a honeycomb made of flame-resistant paper; a honeycomb attached with conventional flame-resistant film made in the laboratory; honeycomb impregnated with flame retardant; a honeycomb attached with flame-resistant film after impregnating fire retardant) were used in the study to compare the fire retardant performance. As a result, the honeycomb with impregnated flame retardant showed the highest performance. The flame-resistant film was effective in delaying the igniting time but had a negative effect on the rate of heat and smoke production.

Experimental Study for Consolidation by Electric Heating Systems (전기가열장치를 이용한 압밀촉진에 관한 실험적 연구)

  • Park, Min-Cheol;Im, Eun-Sang;Lee, Kum-Sung;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.43-53
    • /
    • 2012
  • This study deals with the conventional consolidation methods like preloading and vertical drains. For it, Two different mechanism, i.e., increasing of permeability and evaporating of pore water were studied. The marine clays excavated in Incheon were heated at low temperature($90^{\circ}C$) to increase the permeability. Also, Microwave oven and high-temperature electric heater were used for pore water evaporation. Several points raised from the experiments. To fix them, the electric heating system was revised to upgrade the field application and drain efficiency of pore water, and the marine clays were heated by revised electric heater at high temperature($250^{\circ}C$). From Experimental result showed that results, high-temperature heater induced the pore water evaporation and displayed the excellent consolidation behavior. In addition, the cone index of heated clays were increased about 19 times, which suggested that electric heating system could be applied for ensuring the trafficability of heavy equipments.

A Robot End-effector for Biopsy Procedure Automation with Spring-Triggered Biopsy Gun Mechanism (스프링 격발형 생검총 구조를 가진 생검 시술 자동화 로봇 말단장치)

  • Won, Jong-Seok;Moon, Youngjin;Park, Sang Hoon;Choi, Jaesoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.590-596
    • /
    • 2016
  • Biopsy is a typical needle type intervention procedure performed under radiographic image equipment such as computed tomography (CT) and cone-beam CT. This minimal invasive procedure is a simple and effective way for identifying cancerous condition of a suspicious tissue but radiation exposure for the patients and interventional radiologists is a critical problem. In order to overcome such trouble and improve accuracy in targeting of the needle, there have been various attempts using robot technology. Those devices and systems, however, are not for full procedure automation in biopsy without consideration for tissue sampling task. A robotic end-effector of a master-slave tele-operated needle type intervention robot system has been proposed to perform entire biopsy procedure by the authors. However, motorized sampling adopted in the device has different cutting speed from that of biopsy guns used in the conventional way. This paper presents the design of a novel robotic mechanism and protocol for the automation of biopsy procedure using spring-triggered biopsy gun mechanism. An experimental prototype has been successfully fabricated and shown its feasibility of the automated biopsy sequence.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels (축소터널 철도차량 화원 설계 및 임계속도 측정연구)

  • Park, Won-Hee;Hwang, Sun-Woo;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 2020
  • In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.