• Title/Summary/Keyword: convective conditions

Search Result 214, Processing Time 0.028 seconds

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

A Study on the Characteristics of Heat Exchanger using Heat Pipe for various Working Condition (운전조건에 따른 히트파이프를 이용한 열교환기의 특성에 관한 연구)

  • Lee, Y.S.;Jang, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.155-165
    • /
    • 1990
  • The purpose of this research is to study the characteristics of heat exchanger using heat pipe under various working conditions by a finite element analysis and experiment. The results are as follows. 1) In this study, h = $Max^B$ is used for the convective heat transfer coefficient and A = 2.761 and B = 0.701 $Mmax^{(-0.0626)}$ were obtained as the results of experiment. 2) For several different working conditions, (Q/Qb) is predicted by varying the values of L/Lt and Re/Rc. The maximum value of (Q/Qb) is achieved when Re/Rc = 1 and Le/Lc = 0.5. 3) The comparison between calculated value and experimental data showed agreement within 5% error. Therefore the method may be used to predict the performance of heat exchanger using heat pipe for similar geometric conditions. 4) For Re/Re/Rc of 0.2-0.3, the minimum thermal resistance exists when Le/Lt is 0.4-0.65.

  • PDF

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF

Study on simultaneous heat and mass transfer during the physical vapor transport of Hg2Br2 under ㎍ conditions

  • Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.107-114
    • /
    • 2019
  • A computational analysis has been carried out to get a thorough and full understanding on the effects of convective process parameters on double-diffusive convection during the growth of mercurous bromide ($Hg_2Br_2$) crystals on earth and under ${\mu}g$ conditions. The dimensional maximum magnitude of velocity vector, ${\mid}U{\mid}_{max}$ decreases much drasticlly near Ar = 1, and, then since Ar = 2, decreases. The ${\mu}g$ conditions less than $10^{-2}g$ make the effect of double-diffusion convection much reduced so that adequate advective-diffusion mass transfer could be obtained.

Study on Design Factor and Design-code Development for Plate Type Heat Exchangers (판형 열교환기의 주요 설계인자와 설계프로그램 개발에 관한 고찰)

  • Ko, Jea-Hyun;Park, Kweon-Ha;Song, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1003-1009
    • /
    • 2012
  • Heat exchanger has been widely used in the industry which needs energy transport, and the application of the plate type heat exchanger having high efficiency has been greatly increased. In this study main design parameters are analyzed and new equations are induced. The induced formulation was compared with a commercial program in order to design an optimal heat exchanger. The equations of heat transfer coefficient and pressure drop for Chevron angles are introduced as functions of Reynolds number. The program implemented the equations is tested with Chevron angle variation. The results show that the convective heat transfer coefficients take errors within 8% and the pressure drops have errors within 5% in the analysis conditions.

Case Study of Variations in the Tropical Atmospheric Boundary Layer According to the Surface Conditions (지표 조건에 따른 열대 대기경계층 변화의 사례 연구)

  • Byoung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.337-342
    • /
    • 2001
  • The Rondonia Boundary Layer Experiment (RBLE-II) was conceived to collect data the atmospheric boundary layer over two representative surface in the Amazon region of Brazil; tropical forest and a deforested, pasture area. The present study deals with the observations of atmospheric boundary layer growth and decay. Although the atmospheric boundary layer measurements made in RBLE-II were not made simultaneously over the two different surface types, some insights can be gained from analysing and comparing with their structure. The greater depth of the nocturnal boundary layer at the forest site may be due to influence of mechanical turbulence. The pasture site is aerodynamically smoother and so the downward turbulent diffusion will be much pasture than over the forest. The development of the convective boundary layer is stronger over the pasture than over the forest. The influence of the sensible heat flux is important but may be not enough to explain the difference completely. It seems that energy advection may occur from the wet and colder(forest) to the dry and warmer area(pasture), rapidly breaking up the nocturnal inversion. Such advection can explain the abrupt growth of the convective boundary layer at the pasture site during the early morning.

  • PDF

A Numerical Analysis of Convective Heat Transfer in Air Flow Channels of a Plate Fin-tube Matrix for Heat Pipe Heat Sinks (히트파이프 히트싱크에서 평판 휜-관으로 구성된 공기유동 냉각채널의 대류 열전달 특성에 관한 수치해석)

  • Kim Sung-Hoon;Shin Hyun-Myung;Kim Chul-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.862-869
    • /
    • 2005
  • A study on convective cooling characteristics has been done in the channels with heat pipes and associated Plane fins Analysis with FLUENT V5.0 lies its Purpose on the possible enhancement of heat transfer capability between an existing three in-line arrayed heatpipes and an extending four in-line arrayed heatpipes with increasing channel width. Numerical analysis is limited to the laminar flow in an isolated flow channel by employing cyclic boundary conditions for calculation purposes. Friction factors for three and four in-line arrayed heatpipes are compared with experimental results. In addition, temperature behavior at the plate fin for the three in-line arrayed heatpipes is compared with experiment. Friction factors and overall channel heat transfer coefficients (and/or Nusselt numbers) are presented as a function of Reynolds number. An increase of number of heatpipes and channel width reults in a decrease of the friction factor and doesn't not result in an increase of heat transfer performance. However. considering the 25$\%$ increase of heat load accompanies with maximum 8$^{\circ}C$ rise of average temperature of heat pipes, the four in-line array with the increase of channel width of heat pipe heat sink can be considered appropriate.

Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate (수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발)

  • 성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Prediction of Penetration and Heat Affected Zone by Using Finite Element Method in $CO_2$ Arc Welding (유한 요소법을 이용한 $CO_2$아아크 용접부의 용입깊이와 열영향부 크기 예측)

  • 이정익;박일철;박기영;엄기원
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.222-229
    • /
    • 1992
  • A prediction of penetration and heat affected zone by using Finite Element Method in CO$_{2}$ Arc Welding has been discussed this paper. The temperature distribution of a base metal produced by the CO$_{2}$ arc welding processing is analyzed by using a three dimensional finite element model. The common finite element program ANSYS 4.4A was employed to obtain the numerical results. Temperature dependent material properties, effect of latent heat, and the convective boundary conditions are included in the model. Numerically predicted sizes of the penetration and the heat affected zone are compared with the experimentally observed values. As a result, there was a slight difference between numerical analysis values and experimentally observed values. For in the case of heat affected zone, it was not considered a precise forced convective coefficient value, and in the case of penetration, it was not, considered a arc force.

  • PDF