• Title/Summary/Keyword: controller gain perturbation

Search Result 18, Processing Time 0.02 seconds

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

Design of active power factor control AC/DC converter having current control loop with no compensator (전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계)

  • 이인호;김성환;유지윤;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

Takagi-Sugeno Fuzzy Integral Control for Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper, Takagi-Sugeno (TS) fuzzy integral control is investigated to regulate the output voltage of an asymmetric half-bridge (AHB) DC/DC converter; First, we model the dynamic characteristics of the AHB DC/DC converter with state-space averaging method and small perturbation at an operating point. After introducing an additional integral state of the output regulation error, we obtain the $5^{th}$-order TS fuzzy model of the AHB DC/DC converter. Second, the concept of the parallel distributed compensation is applied to design the fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, simulation results are presented to show the performance of the considered design method as the output voltage regulator and compared to the results for which the conventional loop gain method is used.

Design of Robust Torque Controller for an Internal Combustion Engine with Uncertainty (내연기관의 강인한 토크제어를 위한 제어계 설계법)

  • Kim, Young-Bok;Jeong, Jeong-Soon;Lee, Kwon-Soon;Kang, Heui-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1029-1037
    • /
    • 2010
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved and the demanded objectives are satisfied. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameters in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, in this paper, we consider the robust stability problem of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is shown. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition, then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

Robust Torque Control for an Internal Combustion Engine with Nonlinear Uncertainty (비선형 불확실성을 갖는 내연기관의 강인한 토크제어)

  • Kim, Y.B.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.43-50
    • /
    • 2009
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved satisfying the demanded objectives. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameter in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, the present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

  • PDF

MPPT Control of Photovoltaic using VS-PO Method (VS-PO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.45-53
    • /
    • 2015
  • A I-V and P-V characteristic of solar cell is changed to nonlinear by radiation and temperature. Therefore, to use efficiently PV system, operating point of PV system is must operate at maximum power point always. A performance of conventional the PO and the IC method is depend on the step size. So it has weakness which is must select optimal step size. Also, MPPT control applying PI and fuzzy control is not expected satisfactory performance, because of PI controller has fixed gain and fuzzy control has cumulative error by an integral calculus. Therefore, this paper proposes the VS-PO(Variable Stepsize - Perturbation & Observation) MPPT control that is automatically adjusted the step size according to the operating conditions. The VS-PO MPPT method proposed in this paper analyzes control characteristic about condition of radiation and compares with conventional methods. The validity of this paper proves using this results.

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.