• 제목/요약/키워드: controller design problem

Search Result 910, Processing Time 0.033 seconds

A Study on AC Servo Motor Drive Using the Virtual state (가상 상태를 이용한 교류 서보 전동기 구동에 관한 연구)

  • Kim, Sung-Hwon;Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Min-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1158-1160
    • /
    • 2002
  • In this paper, we presents sliding surface design techniques using the virtual state. This sliding surface has same dynamic of nominal system and permit application with other controller. If select initial value of the virtual state properly, problem of reaching phase disappears. And applied in AC servo motor's speed control to show performance of proposed sliding mode control techniques.

  • PDF

Output feedback $H^{\inty}$ Control for Linear Systems with Time-varying Delayed State

  • Jeung, Eun-Tae;Oh, Do-Chang;Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.48-51
    • /
    • 1996
  • This note considers the $H^{\infty}$ controller design problem for linear systems with time-varying delays in states. We obtain sufficient conditions for the existence of k-th order $H^{\infty}$ controllers in terms of three linear matrix ineualities(LMIs). These sufficient conditions are dependent on the maximum value of the time derivative of time-varying delay. Furthermore, we briefly explain how to construct such controllers from the positive definite solutions of their LMIs and give an example.e.

  • PDF

Stabilization and trajectory control of the flexible manipulator with time-varying arm length

  • Park, Chang-Yong;Ono, Toshiro;Sung, Yulwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.20-23
    • /
    • 1996
  • This paper deals with the flexible manipulator with rotational and translational degrees of freedom, which has an arm of time-varying length with the prismatic joint. The tracking control problem of the flexible manipulator is considered. First we design the controller of the 2-type robust servo system based on the finite horizon optimal control theory for the trajectory planned as a discontinuous velocity. Next, to reduce the tracking error, we use the method of the dynamic programming and of modifying the reference trajectory in time coordinate. The simulation results show that the dynamic modeling is adequate and that the asymptotic stabilization of the flexible manipulator is preserved in spite of nonlinear terms. The PTP control error has been reduced to zero completely, and the trajectory tracking errors are reduced sufficiently by the proposed control method.

  • PDF

Asymptotically stable tracking control of mobile robots (이동로보트의 점근적으로 안정한 추종제어)

  • 김도현;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.187-190
    • /
    • 1997
  • In the past few years, many researchers are interesting of control of mobile robot with nonholonomic constraints. And tracking problems is important as well as regulation in nonholonomic system control. Some researchers have investigated the stable tracking control law for mobile robot. But, few results showed the globally asymptotically stable control method simply. So, we address the design of globally asymptotically stable tracking control law for mobile robot with nonholonomic velocity constraints using simple method. The stabilizability of the controller is derived by Lyapunov direct method. And we analyze the system responses according to the variation of control parameters in line tracking problem. It is derived that the responses represent no overshoot property in line tracking. Examples are two-wheeled mobile robot and car-like mobile robot and the simulation results represent the effectiveness of our method.

  • PDF

Discrete-Time Output Feedback Control of Nonlinear Systems with Unknown Time-Delay : Fuzzy Logic Approach (미지의 시간지연을 갖는 비선형 시스템의 이산시간 퍼지 출력 궤환 제어)

  • 신현석;김은태;박민용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.374-378
    • /
    • 2003
  • A new discrete-time fuzzy output feedback control method for nonlinear systems with unknown time-delay is proposed. Ma et al. proposed an analysis and design method of fuzzy controller and observer and Cao et al. extend this result to be applicable fir the nonlinear systems with known time-delay. For the case of unknown time-delay, we derive the sufficient condition f3r the asymptotic stability of the equilibrium Point by applying Lyapunov-Krasovskii theorem and convert this condition into the LMI problem.

Differential Geometric Approach to Sliding Mode Control of Spacecraft Attitude Tracking

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1599-1603
    • /
    • 2004
  • Based on the idea that nonlinear PWM controller design can be directly applied to the attitude tracking problem of thruster-controlled spacecraft because it constitutes a sub-class of nonlinear PWM controlled system, nonlinear and output error feedback PWM controlled system is considered to describe the behavior of thruster-controlled spacecraft, and to determine actual thruster on-time which guarantees system stability. A differential geometric approach is utilized to show an asymptotical stability of average PWM system, which finally guarantees the stability of closed loop PWM controlled system. Simulation results show that the motions of PWM controlled system occurs very closely around those of the average model of PWM controlled system.

  • PDF

Robust Adaptive Output Feedback Control for Nonlinear Systems with Higher Order Relative Degree

  • Michino, Ryuji;Mizumoto, Ikuro;Tao, Yuichi;Iwai, Zenta;Kumon, Makoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.78-83
    • /
    • 2003
  • In this paper, it is dealt with a controller design problem for nonlinear systems with higher order relative degree. A robust adaptive control for uncertain nonlinear systems with stable zero dynamics will be proposed based on the high-gain adaptive output feedback and backstepping strategies. The proposed method is useful in the case where only the output signal is available.

  • PDF

A Study On Ubiquitous Road For Prevention Of The Overweight Vehicles (과적차량 방지를 위한 유비쿼터스도로에 관한 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun;Oh, Sei-Young;Shin, Byung-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.548-553
    • /
    • 2008
  • Overloaded Vehicles are one of biggest of hazard in durability decrease of roads and bridges. Thus, regulation was put in force about overloaded vehicles to reserve this problem. However, existing system had many problems. For these reasons, this paper presents solutions of U-intelligent overload vehicles regulation system based on manless and wireless for fixing of problems of existing system and construction of ITS. With this in mind, we studied about composition method of system, applications of USN, design of system controller, WCDMA/ HSDPA, etc in this paper.

  • PDF

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

A Study on Robust Trajectory Tracking Control of a Skid Steering Robots (미끄럼 조향 로봇의 강인한 궤적 추종 제어에 관한 연구)

  • Baek, Woon-Bo;Kim, Won-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.121-127
    • /
    • 2010
  • We consider the robust trajectory tracking control problem for a skid steering mobile robots. A dynamic model is derived accounting for the effects of wheel skidding. The control design utilizes the dynamic feedback linearization techniques, so as to obtain a predictable behavior for the instantaneous center of rotation thus preventing excessive skidding. The additive controller using the sliding mode type is then robustified against the unmodelled dynamics and parameter uncertainty. Simulation results show the good performances under excessively uncorrected estimations of the longitudinal forces and the lateral resistive forces caused by the skidding of the wheels in tracking trajectories.