• Title/Summary/Keyword: controller design problem

Search Result 910, Processing Time 0.031 seconds

Application of Fuzzy Integral Control for Output Regulation of Asymmetric Half-Bridge DC/DC Converter with Current Doubler Rectifier

  • Chung, Gyo-Bum;Kwack, Sun-Geun
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2007
  • This paper considers the problem of regulating the output voltage of a current doubler rectified asymmetric half-bridge (CDRAHB) DC/DC converter via fuzzy integral control. First, we model the dynamic characteristics of the CDRAHB converter with the state-space averaging method, and after introducing an additional integral state of the output regulation error, we obtain the Takagi-Sugeno (TS) fuzzy model for the augmented system. Second, the concept of parallel distributed compensation is applied to the design of the TS fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, numerical simulations of the considered design method are compared to those of the conventional method, in which a compensated error amplifier is designed for the stability of the feedback control loop.

A Speed Control of A Series DC Motor Using Adaptive Fuzzy Sliding-Mode Method (적응 퍼지 슬라이딩 모드 기법을 이용한 Series DC 모터의 속도제어)

  • Kim, Do-Woo;Yang, Hai-Won;Jung, Gi-Chul;Lee, Hyo-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2292-2295
    • /
    • 2001
  • In this paper, The control problem for a series DC motor is considered to adaptive fuzzy sliding-mode control scheme. Based on a nonlinear mathematical model of a series connected DC motor, instead of the combination of a nonlinear transformation and state feedback(feedback linearization) reduces the nonlinear control design. To demonstrate its effectiveness, an experimental study of this controller is presented. Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of SMC, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce computing time considerably.

  • PDF

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Shim, Kyu-Hong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.4-34
    • /
    • 2001
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition so called output feedback exponential passivity (OFEP). The designed high gain adaptive controller has simple structure and high robustness with regard to bounded disterbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we deal with a design problem of the robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances.

  • PDF

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

A study on the optimal tracking problems with predefined data by using iterative learning control

  • Le, Dang-Khanh;Le, Dang-Phuong;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1303-1309
    • /
    • 2014
  • In this paper, we present an iterative learning control (ILC) framework for tracking problems with predefined data points that are desired points at certain time instants. To design ILC systems for such problems, a new ILC scheme is proposed to produce output curves that pass close to the desired points. Unlike traditional ILC approaches, an algorithm will be developed in which the control signals are generated by solving an optimal ILC problem with respect to the desired sampling points. In another word, it is a direct approach for the multiple points tracking ILC control problem where we do not need to divide the tracking problem into two steps separately as trajectory planning and ILC controller.The strength of the proposed formulation is the methodology to obtain a control signal through learning law only considering the given data points and dynamic system, instead of following the direction of tracking a prior identified trajectory. The key advantage of the proposed approach is to significantly reduce the computational cost. Finally, simulation results will be introduced to confirm the effectiveness of proposed scheme.

The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method (Davidenko법에 의한 시간최적 제어문제의 수치해석해)

  • Yoon, Joong-sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

Design of Sliding Hyperplanes in Nonlinear Variable Structure Systems with Uncertainties (불확실성을 갖는 비선형 가변구조시스템의 슬라이딩 초평면 설계)

  • 박동원;최승복;김재문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1985-1996
    • /
    • 1994
  • A new design method of sliding hyperplanes is proposed in the synthesis of a variable structure controller for robust tracking of general nonlinear multi-input-output(MIMO) uncertain systems of relative degree higher than two. Input/ output(I/O) linearzation is firstly undertaken by employing the concept of relative degree and minimum phase followed by the construction of sliding mode controllers. Sliding hyperplanes are then derived from the inherent properties of companion matrix and ideal sliding mode characterized in I/O linearized system. Subsequently, the gradient magnitudes of the sling hyperplanes are determined in an optimal manner by considering a quadratic performance index to be evaluated at two phases; a reaching phase and a sliding phase. The proposed design methodology is relatively straightforward and systematic compared with conventional strategies such as geometric approach or pole assignment technique. A nonlinear governor and exciter control problem for a power system is adopted herein in order to demonstrate the design efficiency and also favorable and robust control performances.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System (자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기)

  • Yu, Jun Young;Kim, Wonhee;Son, Young Seop;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

A Robust Output Feedback Control of Robot Manipulators with Integral Action (적분작용을 포함하는 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Shin, Eui-Seok;Lee, Kang-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In this paper, we design a robust output feedback controller for robot manipulators with bounded parametric uncertainties using high-gain observer. The proposed control scheme with integral action improves tracking error due to limit of the robust feedback gains. High-gain observer is used to solve the noise problem with the joint velocity measurement. This controller avoids the limitation on the variation of unknown parameters and guarantees the uniformly ultimate boundedness of the closed-loop system. The performance of the proposed method is demonstrated by simulation on a 2-link manipulator.

  • PDF