• Title/Summary/Keyword: controller design problem

Search Result 910, Processing Time 0.036 seconds

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

Design of rule based expert controller for time delay systems (지연시간을 갖는 계통의 성능 향상을 위한 지식기반 전문가 제어기 설계)

  • 박귀태;이기상;김성호;박태홍;고응렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.117-121
    • /
    • 1990
  • The control process involving pure time delays presents a continuing challenge to the control system engineer. The nonlinear nature of the delay which can be introduced into the system make the use of conventional control algorithms a poor prospect. The Smith Predictor was developed to alleviate this problem. Unfortunately the quality of control achieved with the Smith Predictor is known to be sensitive to modelling errors. Only recently have researchers attempted to quantify the Smith Predictor controller's robustness to modelling errors. In several studies stability boundaries were plotted as functions of errors in parameters. But the research results address the question of performance of Smith Predictor controllers, In this paper, the Rule based Expert Systems for performance improvement of the Smith Predictor controller are developed.

  • PDF

Design of Multiple Controller Based on Fuzzy Inference System for Control of Ultrasonic Motor (초음파 모터 제어를 위한 퍼지 추론 시스템 기반 다중 제어기 설계)

  • 민병우;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.258-258
    • /
    • 2000
  • In this paper, we present the position control of pendulum system which is driven by a ultrasonic motor. Since the system's response is different for each initial position of pendulum, it is difficult to obtain the satisfiable control performance by using a neural network which is learned by off-line. To overcome this problem, we propose the multiple controller based on fuzzy inference system for ultrasonic motor. and controller is designed by neural network. The proposed method shows good performance for any initial positions and it's effectiveness is verified from experiments. We expect that ultrasonic motor can be used as actuators of robot's leg or manipulator.

  • PDF

The study of ABS control system using fuzzy controller for commercial vehicles (퍼지 제어기를 이용한 상용차 ABS 제어에 대한 연구)

  • 김동희;박종현;김용주;황돈하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.110-110
    • /
    • 2000
  • In this paper, an antilock brake system (ABS) for commercial vehicles is studied by considering the design of a fuzzy Logic controller with pulse width modulation (PWM). PWM method is used for generating solenoid valve inputs in order to cope with the chattering problem caused by the conventional on/off control The sliding mode observer is designed to estimate the vehicle longitudinal velocity and it is used to calculate the wheel slip ratio. The effectiveness of the proposed control algorithm was validated by simulations performed with a nonlinear 14-DOF vehicle model including the dynamics of the brakes.

  • PDF

Adaptive Fault-Tolerant Dynamic Output Feedback Control for a Class of Linear Time-Delay Systems

  • Ye, Dan;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2008
  • This paper considers the problem of adaptive fault-tolerant guaranteed cost controller design via dynamic output feedback for a class of linear time-delay systems against actuator faults. A new variable gain controller is established, whose gains are tuned by the designed adaptive laws. More relaxed sufficient conditions are derived in terms of linear matrix inequalities (LMIs), compared with the corresponding fault-tolerant controller with fixed gains. A real application example about river pollution process is presented to show the effectiveness of the proposed method.

An Experimental Study on the Development of the Anti-Rolling Control System for a Ship (선체 횡동요 방지 장치 개발을 위한 실험적 연구)

  • 김영복;변정환;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

Design of Robust Controller for Electromagnetic Suspension System with Kalman Filter (칼만 필터를 이용한 자기부상 시스템의 강인제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Jo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1411-1413
    • /
    • 2000
  • Distubance of air-gap sensors by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension (EMS) systems. Thus, this paper proposes the output feedback controller with discrete kalman filter for the EMS systems. The discrete kalman filter estimate true state value and output feedback controller guarantee stability. The benefit of this scheme are shown by simulation. Therefore air-gap disturbance are rejected successfully.

  • PDF

A Study of Optimal Load Follow Control in Pressurized Water Reactors (감압경수형 원자로의 최적부하추종제어에 관한 연구)

  • 김락규;박상휘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.12
    • /
    • pp.491-497
    • /
    • 1985
  • An applicaton of the linear optimal control theory to the problem or load follow control in pressurized water reactors (PWR) is investigated. In order to perform the steady-state and load follow operation in PWR, a nonlinear model for the reactor and steam generator is derived and linearized at 50% rated power. Simulation tests are performed for 10% demanded load. Comparing the dynamic response of the newly developed optimal load follow controller with those of the integral error feedback controller proposed by Yang, the rise time of dynamic response of the former is about 15 seconds faster than those of the latter, thus the results indicate that the fast response of the optimal load follow controller is verified. The results of this work are directly applicable to the design of the load follow control systems for commercially operated PWRs.

  • PDF

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

Transient Stability Control of Power System using Passivity and Neural Network (시스템의 수동성과 신경망을 이용한 전력 시스템의 과도 안정도 제어)

  • Lee, Jung-Won;Lee, Yong-Ik;Shim, Duk-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1004-1013
    • /
    • 1999
  • This paper considers the transient stability problem of power system. The power system model is given as interconnected system consisting of many machines which are described by swing equations. We design a transient stability controller using passivity and neural network. The structure of the neural network controller is derived using a filtered error/passivity approach. In general, a neural network cannot be guaranteed to be passive, but the weight tuning algorithm given here do guarantee desirable passivity properties of the neural network and hence of the closed-loop error system. Moreover proposed controller shows good robustness by simulation for uncertainties in parameters, which can not be shown in the speed gradient method proposed by Fradkov[3,7].

  • PDF