• Title/Summary/Keyword: controller area network system

Search Result 262, Processing Time 0.028 seconds

Analysis of the Position Control Performance under the Time Delay in the Controller Area Network (CAN 시간지연에 대한 아라고 진자의 위치제어 성능분석)

  • Park, Tae-Dong;Lee, Jae-Ho;Youn, Su-Jin;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.354-356
    • /
    • 2006
  • In this paper, the position control performance of networked control systems is analyzed when time delay through the network is considered. Integrating a control system into a network has great advantages over the traditional control system which uses point to point connection: it allows remarkable reduction in wiring, makes it easy to install and maintain the system, and improves compability. However, a networked control system has the critical defect that network uncertainties, such as time delay, can degrade the control system's performance. Therefore, the major concern of a networked control system is analyzing the effect of network uncertainties. This paper is concerned with PID controller performance for stability region, critical stability region and unstability region under the time delay in the Controller Area Network.

  • PDF

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Realization of automobile electromotive mirror system using Controller Area Network(CAN Protocol) (Controller Area Network을 이용한 자동차용 전동거울 시스템 구현)

  • Yoon, Sang-Jin;Cho, Yong-Seok;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2234-2236
    • /
    • 2002
  • In this paper, realized an automation system that applies the automobile electromotive mirror using CAN(Controller Area Network : ISO l1898). CAN is being used mainly in ECUs (Electronic Control Units) connection of control system or automobile inside. And it has high reliability in the various network protocol. To be realized position system, Automobile Electro mirror, has a strong point that estabilishment e decrease and ease of maintenance it compare PPP(Point-to-point) method of existed. The realization composed of three portions. One Input Slave Con which accept a user's input, another Output Slave Co which drove it makes the motor of electromotive mirr other Master Controller which interfacing the two Controller. Automobile electromotive mirror realized time system that will be able to minize the delay t point of time user's input until output point of time mirror.

  • PDF

Design Methodology of Networked Control System using CAN(Controller Area Network) Protocol (CAN(Controller Area Network) 프로토콜을 이용한 네트워크 제어시스템 설계)

  • Jung, Joon-Hong;Choi, Soo-Young;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2328-2330
    • /
    • 2003
  • This paper presents a new design methodology of networked control system using CAN(Controller Area Network). Feedback control systems having control loops closed through a network are called networked control systems. We design CAN nodes which can transmit control and monitoring data through network bus and apply these to networked control system design. We analyze the variation of stability property according to network-induced delay and determine a proper sampling period of networked control system that preserves stability performance. The results of the experimental example validate effectiveness of our networked control system.

  • PDF

Development of Network-based Traction Control System and Study its on Performance Evaluation using Net-HILS (Net-HILS를 이용한 네트워크기반 구동력제어시스템 개발 및 성능평가에 관한 연구)

  • Ryu, Jung-Hwan;Yoon, Ma-Ru;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units (ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electricthrottle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Application of Controller Area Network to Humanoid Robot (휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF

Multiplexing Control of Automobile Eletromotive Mirror System using CAN(Controller Area Network) Protocol (CAN(Controller Area Network) 프로토콜을 이용한 자동차용 전동 거울의 멀티플렉싱 제어)

  • Yoon, Sang-Jin;Choi, Goon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5110-5116
    • /
    • 2011
  • In this paper, multiplexing automation system will be proposed for the automobile electromotive mirror using CAN(Controller Area Network) protocol which has been known that it has a high reliability on the signal in the various network protocols. To do this, a master controller and two (input/output) slave controllers (H/W) are being made and application layer (S/W) is being programmed for effective going and communicating between subsystems. The possibility of the effectiveness of application and control ability will be shown when the system has minimum electrical lines by testing the experimental systems which was made up of the automobile electromotive mirror.

A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구)

  • Chung, Hyeng-Hwan;Kim, Sang-Hyo;Joo, Seok-Min;Lee, Jeong-Phil;Lee, Dong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

Network Implementation for automobiles using CAN (CAN을 이용한 자동차용 Network 구현)

  • Hur Hwa-Ra
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.335-354
    • /
    • 1998
  • In this study I construct CAN(Controller Area Network) for automobiles similar to LAN(Local Area Network) and build communication modules in the major part of an automobile to link several sub-systems. Since each station replaces the communication function of sub-systems and has various types of sensor, actuator, controller, and switch, every information about automobile's status is obtained from the network. The manufactured system showed a superior capability. The following is the contents of study. 1. The definition of communication packet through the analysis of CAN protocol. 2. The Design of modules using micro-controller 80C196CA. 3. The Network configuration.

  • PDF