DOI QR코드

DOI QR Code

Multiplexing Control of Automobile Eletromotive Mirror System using CAN(Controller Area Network) Protocol

CAN(Controller Area Network) 프로토콜을 이용한 자동차용 전동 거울의 멀티플렉싱 제어

  • Yoon, Sang-Jin (Connectivity S/W Team, Cambridge Silicon Radio(CSR) Korea) ;
  • Choi, Goon-Ho (IT & Media Reaserch Center, Korea University of Technology and Education)
  • Received : 2011.10.04
  • Accepted : 2011.11.10
  • Published : 2011.11.30

Abstract

In this paper, multiplexing automation system will be proposed for the automobile electromotive mirror using CAN(Controller Area Network) protocol which has been known that it has a high reliability on the signal in the various network protocols. To do this, a master controller and two (input/output) slave controllers (H/W) are being made and application layer (S/W) is being programmed for effective going and communicating between subsystems. The possibility of the effectiveness of application and control ability will be shown when the system has minimum electrical lines by testing the experimental systems which was made up of the automobile electromotive mirror.

본 논문에서는 산업용 필드 버스 프로토콜 중 신호적으로 가장 안정하다고 알려져 있는 CAN(Controller Area Network) 프로토콜을 이용하여 자동차용 전동 거울의 멀티플렉싱 제어 시스템을 제안하고자 한다. 이를 위하여 하나의 마스터 컨트롤러와 입/출력을 각각 담당하는 2개의 슬레이브 컨트롤러를 설계하여 구현하고(H/W), 이러한 각 서브 시스템 들의 효과적인 동작과 통신을 위한 Application Layer를 구현(S/W)하였다. 구현된 전체 시스템은 실제 자동차용 전동 거울에 장착하여 실험함으로써 최소한의 전장 요소들만으로 효과적인 시스템의 운용 및 제어가 가능함을 보이고자 한다.

Keywords

References

  1. Electronic Engineering Co., "The Concept of CAN Protocol," Electronic Engineering Magazine, pp.114-120, Feb. 1998.
  2. BOSCH, CAN Specification, Part A,B 1991.
  3. Ken Tindell, Alan Burns, "Guaranteed Message Latencies for Distributed Safety-Critical Hard Real Time Control Network," report YCS229, Department of Computer Science, University of York, May 1994.
  4. J. Yun, S. Nam, K. W. Kim, and S. Lee, "Evaluation of Network Protocols for Automotive Data Communication", J. of Control Automation and Systems Engineering, vol.3, no.6, pp.632-638, Dec. 1997.
  5. Y.H. Song, J.H. Park, K.C. Lee, and S. Lee, "Network-based Distributed Approach for Implimentarion of an Unmanned Autonomous Forlift," Journal of Institute of Control, Robotics and Systems, v.16, no.9, pp.898-904, 2010. https://doi.org/10.5302/J.ICROS.2010.16.9.898
  6. M. Shin, W. Lee, M. Sunwoo, and S. Han, "Development of a Body Network System with OSEK/VDX Standards and CAN Protocol," Transactions of Korea Society of Automotive Engineers, v.10, no.4, pp.175-180, 2002.
  7. Cha-Keun Cheong, "A System Development for Car Signal and Sensor Control with Controller Area Network(CAN) Communication Protocol," J. of the Institute of Signal Processing and Systems, vol.3, no.3, pp.54-62, 2002.
  8. J. Rufino, P. Verissimo, "A Study on the Inaccessibility Characteristics of the CAN," 2nd International CAN Conference, 1995.
  9. Dong-Jin Oh, "Development of a Mutiplexing Method for Multi-System Control," Master Thesis, SungKyunKwan Univ., 1999.
  10. Philips Semiconductor, "SJA1000 Standard-Alone CAN controller Product," Datasheet, Jan. 2000.
  11. Philips Semiconductor, "P82C150 CAN Serial Linked I/O device(SLIO) with digital and analog port function," Datasheet, Jun. 1996.
  12. K. W. Tindell, A. Burns, and A. J. Wellings, "An Extendible Approach for Analysing Fixed Priority Hard Real-Time Task," Real-time System, vol.6, no.2, pp.133-151, 1994.
  13. K. W. Tindell, A. Burns, A. J. Wellings, "Guaranteering Hard Real Time End-to-End Communications Deadlines", RTRG/91/107, Department of Computer Science, University of York, Dec 1991.