• 제목/요약/키워드: controlled atmosphere

검색결과 286건 처리시간 0.028초

기공형성제 PMMA와 WO3 분말 성형체의 열처리를 이용한 W 다공체 제조 (Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts)

  • 전기철;김영도;석명진;오승탁
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.129-133
    • /
    • 2015
  • Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and $WO_3$ powder compacts. The PMMA sizes of 8 and $50{\mu}m$ were used as pore forming agent for fabricating the porous W. The $WO_3$ powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at $1200^{\circ}C$ in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about $400^{\circ}C$ and $WO_3$ was reduced to metallic W at $800^{\circ}C$. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.

MoO3/camphene 슬러리의 동결건조 및 수소환원에 의한 Mo 다공체 제조 (Fabrication of Porous Mo by Freeze-Drying and Hydrogen Reduction of MoO3/Camphene Slurry)

  • 이원석;오승탁
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.446-450
    • /
    • 2012
  • In order to fabricate the porous Mo with controlled pore characteristics, unique processing by using $MoO_3$ powder as the source and camphene as the sublimable material is introduced. Camphene-based 15 vol% $MoO_3$ slurries, prepared by milling at $50^{\circ}C$ with a small amount of dispersant, were frozen at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $750^{\circ}C$, and sintered at $1000-1100^{\circ}C$ for 1 h. After heat treatment in hydrogen atmosphere, $MoO_3$ powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about $150{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores due to the difference in the camphene growth rate during freezing process. The size of small pores was decreased with increase in sintering temperature, while that of large pores was unchanged. The results are strongly suggested that the porous metal with required pore characteristics can be successfully fabricated by freeze-drying process using metal oxide powders.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Physicochemical Characterization and Dissolution Properties of CS-891 with Different Crystallinity

  • Lee, Woo-Young;Park, Byoung-Woo;Park, Yong-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권4호
    • /
    • pp.279-285
    • /
    • 2005
  • Ground CS-891 (N-[1-(4-methoxyphenyl)-1-methylethyl]-3-oxo-4-aza-5a-androst-1-ene-$17{\beta}$-carboxamide) of poorly water soluble drug was obtained using a Heiko Seisakusho model TI-100 vibration mill, and samples with different crystallinity were prepared at mixture ratios of 10:0, 7:3, 5:5, 3:7 and 0:10 (intact;ground CS-891). Physicochemical characterizations were obtained using qualitative and quantitative X-ray diffractometry, different scanning calorimetry (DSC), scanning electron microscopy (SEM), Quantasorb surface area analyzer, and controlled atmosphere microbalance. With increase of amorphous CS-891 in mixture ratios, the intensities of X-ray diffraction peaks of crystalline CS-891 were decreased, whereas surface area, water absorption, and exothermic peaks in DSC were increased. The apparent solubility of ground CS-891 was $4.4\;{\mu}g/ml$ and the solubility of intact CS-891 was $3.1\;{\mu}g/ml$ at $37{\pm}1^{\circ}C$. The apparent precipitation rates of CS-891 in a supersaturated solution during the solubility test were increased with an increase of amorphous CS-891, and a crystalline form of CS-891 transformed from amorphous CS-891 after the solubility test was found by X-ray diffraction analysis, DSC and SEM. The dissolution profiles of CS-891 with different crystallinity at $37{\pm}1^{\circ}C$ by the USP paddle method were investigated, and the apparent dissolution rate constant of ground CS-891 was about 5.9-fold higher than that of intact CS-891. A linear relationships between the crystallinity of CS-891 and the apparent dissolution rate constant (r>0.96) were obtained.

Pt 나노분말이 분산된 SiO2 박막의 구조 및 전기적 특성 제어 (Controlling Structural and Electrical Properties of Pt Nanopowder-Dispersed SiO2 Film)

  • 이재호;신인주;이성우;김형철;최병준
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.355-359
    • /
    • 2014
  • Pt nanopowder-dispersed $SiO_2$ (SOP) films were prepared by RF co-sputtering method using Pt and $SiO_2$ targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of $SiO_2$ was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young;Kim, Eun-Yi;Kim, Young-Hee;Whang, Chin-Myung
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.451-456
    • /
    • 2010
  • A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.

잔디밭에서 계절 변화에 따른 이산화탄소 플럭스 변동 (Response of Soil CO2 Fluxes to Seasonal Variations in a Grassplot)

  • 김박사;권병혁;강동환
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1131-1142
    • /
    • 2014
  • In this study, the variations of the carbon dioxide fluxes were investigated with soil temperatures in the grassplot and seasonal variations of carbon dioxide concentrations and fluxes were analysed. Soil temperatures, carbon dioxide concentrations and fluxes were measured on the grassplot in Pukyong National University. Field measurements were carried out 25 times from March in 2010 to March in 2011 with nine points on the grassplot. Seasonal variations of carbon dioxide concentrations and fluxes showed an inverse relation. In summer, carbon dioxide concentrations are lower and carbon dioxide fluxes are higher. In winter, carbon dioxide concentrations are higher and carbon dioxide fluxes are lower. On the grassplot, carbon dioxide emission rate increase when the soil temperature is more than $20^{\circ}C$ and the emission rate decrease when the soil temperatures are less than $10^{\circ}C$. When the accumulated rainfall for five days before measurement day is 20~100 mm, it is showed that the more rainfall, the more carbon dioxide emissions. Carbon dioxide emission rate from the grassplot to the upper atmosphere was increased or decreased by the factors such as soil temperature, growth and wither of grass and rainfall. The results of this study showed that the emission of carbon dioxide in the grassplot is dominantly controlled by seasonal factors (especially soil temperature and rainfall).

Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitors

  • Bae Su-Ho;Chung Young-Soo;Kim Dae-Ho
    • KCI Concrete Journal
    • /
    • 제14권4호
    • /
    • pp.145-150
    • /
    • 2002
  • Reinforced concrete is inherently a durable composite material. When properly designed for the environment to be exposed and carefully constructed, reinforced concrete is capable of giving maintenance-free performance. However, unintentionally using improper materials such as non-washed sea sand having much salt together with poor controlled quality, or the concrete are placed in highly severe environment such as marine atmosphere, the corrosion of reinforcing steel in concrete becomes one of the most significant concerns of concrete. The purpose of this experimental research is to evaluate the performance of corrosion inhibitors for normal strength and high strength concrete, and to propose desirable measures for controlling corrosion of reinforcing steel in concrete. Test specimens in normal strength and high strength concrete were made with and without corrosion inhibitors. The accelerated corrosion test for reinforcing steel in concrete was adopted in accordance with JCI-SC3, which required the periodic 20 cycles for 140 days. One cycle includes 3 days for the wetting condition of $65^{\circ}C$ and $90\%$ RH, and 4 days for the drying condition of $15^{\circ}C\;and\;60\%$ RH. It was observed from the test that corrosion inhibitors in normal strength concrete and high strength concrete showed excellent corrosion resistance for reinforcing steel in concrete, but the silica fume in high strength concrete was found to have a negligible corrosion resistance if not used with corrosion inhibitors, since the chloride corrosion threshold limit in concrete containing silica fume without corrosion inhibitor was found to be considerably smaller than that of the case with corrosion inhibitor.

  • PDF

염료 감응형 태양전지에서 Mesoproso $TiO_2$/FTO 사이에 완충층으로써의 PLD로 증착한 $TiO_2$ 박막에 관한 연구 (A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Mesoproso $TiO_2$ and FTO of Dye-sensitized Solar Cell)

  • 송상우;김성수;노지형;이경주;문병무;김현주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.424-424
    • /
    • 2008
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. Models based on a built-in electric field which sets the upper limit for the open circuit voltage(Voc) and/or the possibility of a Schottky barrier at the interface between the mesoporous wide band gap semiconductor and the transparent conducting substrate have been presented. $TiO_2$ thin films were deposited on the FTO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1 hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD) and atomic force microscope(AFM). Thickness of $TiO_2$ thin films were controlled deference deposition time and measurement by scanning electron microscope(SEM). Then we manufactured a DSC unit cells and I-V and efficiency were tested using solar simulator.

  • PDF

金屬錯이온의 폴라로그래피的 파라미터에 미치는 壓力의 影響 (Effect of High Pressure on Polarographic Parameters of Metal Complex Ion)

  • 이흥락;배준웅;윤종훈
    • 대한화학회지
    • /
    • 제31권5호
    • /
    • pp.444-451
    • /
    • 1987
  • 에틸렌디아민, 프로필렌디아민 및 디에틸렌트리아민의 구리(II), 카드뮴(II) 및 아연(II)착이온의 桓元에 대하여 압력에 따른 폴라로그래피적 파라미터의 依存性을 조사하였다. 水銀滴下電極, 고인수은전극 및 나선형 백금선을 각각 作業電極, 基準電極 및 補助電極으로 사용하였다. 압력이 1기압에서 1,500기압으로 증가함에 따라 금속착이온의 還元半波電位는 陰電位 쪽으로 이동하였으며, 擴散電流는 상당히 커졌다. 이러한 현상은 전해질용액의 물리적 성질 곧 密度, 粘性度, 誘電常數, 電氣傳導度 등이 압력이 증가함에 따라 커지기 때문이다. 압력을 증가시키면 log plot의 기울기 값이 커지므로 환원반응의 可逆性은 나빠지고 있다. 25$^{\circ}$C ~ 35$^{\circ}$C의 온도범위에서 측정한 확산전류의 溫度係數가 압력을 증가시켜도 2%정도이므로 高壓下에서 폴라로그래피적 환원반응은 擴散支配的이다. 또 실험압력 범위내에서 금속착이온의 확산전류와 농도 사이에는 線形關係가 성립하였다.

  • PDF