• Title/Summary/Keyword: controllable fluid

Search Result 69, Processing Time 0.021 seconds

Stability Analysis of Railway Vehicle Featuring MR Damper (MR댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

Semi-active vibration control using an MR damper (MR 댐퍼를 이용한 반능동식 진동 제어)

  • Jeon, Do-Yeong;Park, Chan-Ho;Yu, Jeong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • For the semiactive vibration control, a variable damper and proper control systems are essential. In this research, a controllable damper was designed using the MR fluids and its mechanical properties such as damping constant and response time were measured. Since the response time of the MR damper was much longer than nominal MR fluid response time, the time delay of the damper should be considered in the design of controllers. It is shown that the advanced On/Off vibration control which includes the damper time delay performs more effectively than the conventional one.

  • PDF

Performance Evaluation on an MR Damper Featuring Bypass Hole for Passenger Vehicle (바이패스홀을 특징으로 하는 승용차용 MR 댐퍼의 성능 평가)

  • Oh, Jong-Seok;Shin, Do-Kyun;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.998-999
    • /
    • 2014
  • This paper proposes a method for damping force modeling of magnetorheological (MR) damper featuring bypass hole. After describing configuration and of the MR damper, a damping force modeling of the MR damper is derived based on Bingham model of MR fluid. MR damper consists of piston, accumulator, gap, bypass hole and coil. Damping force is consists of spring force induced by accumulator, viscous force induced at gap and bypass hole, and controllable force induced at gap.

  • PDF

Study on the Compact MR fluid Brake for the Training and Sporting Equipment for Leg Rehabilitation (하지 재활운동치료 기구에 적용하기 위한 소형 MR 유체 브레이크에 관한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang;Kim, Il-Gyoum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2878-2885
    • /
    • 2012
  • In this study, the training and sporting equipment for leg rehabilitation featuring the MR fluids is proposed. The compact MR fluid brake is designed and manufactured to apply to the rehabilitation training and sporting mechanism. The resistance characteristic of the MR fluid brake is controllable by varying the magnetic field around the fluid. Under consideration of spatial limitation, design parameters which are related with the magnetic strength are determined to maximize to a torque using finite element method. The FE analysis is performed using a commercial code, ANSYS Workbench. The proposed brake device is manufactured, and its field-dependant torque is experimentally evaluated. When the electric current is supplied, the torque of the MR fluid brake is increased and the response is very fast. Depending on the strength of the current supply, torques of the MR fluid brake also increase similar to Bingham property of MR fluid.

A Study on the Application of the Cutout Piston for the Improvement of the MR Damper's Control Effect (MR 댐퍼의 제어 효과 향상을 위한 Cutout 피스톤 적용에 관한 연구)

  • Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk;Hong, Yeh-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.506-513
    • /
    • 2011
  • This paper is concerned with a study on the control effect of the MR damper using the cutout piston. The MR damper has passive damping force by the oil pressure and controllable damping force by the magnetic effect. As the velocity of the MR damper's piston increases the passive damping force increases and the ratio of the controllable damping force to the total damping force is decreased. Consequently, the control performance of the MR damper is reduced according to the increase of the velocity. In this paper, the cutout piston concept is applied to the MR damper to improve MR damper's control performance by reducing the passive damping effect. The MR damper with the cutout piston has been designed and manufactured and its hydraulic and electromagnetic analysis has been performed to predict its performance. The control performances of the MR damper with the cutout piston are verified through the comparison of experiment results and simulation results.

Development of Semi-active Damper by Magneto-Rheological Fluid (자기 유변 유체를 이용한 반능동 감쇠기의 개발)

  • 정병보;권순우;김상화;박영진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • Dampers have been used to dissipate energy in mechanical systems. There are several types of dampers such as passive, active, and semi-active damper. Semi-active dampers have higher performance than passive ones and require less power to operate than active ones. Their damping characteristics can be changed properly for varying conditions. In this paper, we investigated the semi-active damper using Magneto-Rheological fluid. Magneto-Rheological fluid, which is one of controllable fluids, changes its damping and rheological characteristics from Newtonian fluid to Bingham fluid as the magnetic field is applied. It has several advantages such as high yield strength, low viscosity, robustness to impurities and wide temperature range of stability. If we designe a semi-active damper by using this material, we can not only design a simply structured damper but also expect rapid response. In this study, we propose several types of semi-active dampers which are designed and manufactured using Magneto-Rheological fluid and some problems encountered during their applications.

  • PDF

Real-time line control system for automated robotic assembly line for multi-PCB models

  • Park, Jong-Oh;Hyun, Kwang-Ik;Um, Doo-Gan;Kim, Byoung-Doo;Cho, Sung-Jong;Park, In-Gyu;Kim, Young-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1915-1919
    • /
    • 1991
  • The efficiency of automated assembly line is increased by realizing the automation of each assembly cell, monitoring the line information and developing the real-time line control system it. which production flow is controllable. In this paper, the several modules which are important factors when constructing automated real-time control system, such as, line control S/W module, real-time model change module, error handling module and line production management S/W module, are developed. For developing these important programming modules, real-time control and multi-tasking techniques are integrated. In this paper, operating method of real-time line control in PCB automated assembly line is proposed and for effective control of production line by using multi-tasking technique, proper operating method for relating real-time line control with multi-tasking is proposed by defining the levels of signals and tasks. CIM-Oriented modular programming method considering expandability and flexibility will be added for further research in the future.

  • PDF

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.

Design of MR Fulid Dampers for Semi-Active Control (반능동 제어를 위한 MR 유체 댐퍼의 설계)

  • 구자인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.496-500
    • /
    • 2000
  • 대형 구조물의 진동제어를 위하여 MR 유체 댐퍼를 사용한 반능동 제어기법에 대하여 연구하였다. 기존에 많이 사용되고 있는 수동제어기법은 일단 제어장치를 설치한 후에는 구조물에 실제로 작용하고 있는 외부 하중의 현재 특성에 대해서 적절히 반응할 수 없다는 제한을 가지고 있으며, 이를 극복하기 위하여 연구되어온 능동제어기법은 구조물이 진동을 감소시키기 위하여 구조물에 직접적으로 가해지는 커다란 제어력을 요구하며, 이로 인해 경우에 따라서는 불안정한 상태가 유발될 수도 있다는 점이 단점으로 지적되고 있다. 최근에 Spencer 등은 반능동 제어기법을 제안하였는데, 이는 수동제어장치의 제어특성을 On-Line 으로 조절하는 방식으로서 제어 가능한 수동제어기법으로도 불리운다. 구조물의 진동제어에 필요한 제어력이, 특수한 제어기구에서 발생되는 인위적인 힘이 아니라, 적절한 구조부재에서 발생되는 자연적인 부재력이므로, 무엇보다 강인하고 신뢰할 수 있는 제어기법이며, 이때 제어장치의 구조적 특성을, 측정된 구조물의 응답에 맞추어 적절히 조절함으로써 다양한 외부하중에 대해 보다 효율적인 제어가 이루어질 수 있도록 한 방법이다. 반능동제어를 위한 제어기로서는 Variable Orifice Dampers, Friction Controllable Isolators, Variable Stiffness Devices, Electro-Rheological (ER) Fluid Damper, Magneto-Rheological(MR) Fluid Damper등이 제안되고 있으며, 본 논문에서는 반응속도가 빠르고, 적은 파워만을 요구하며, 커다란 제어력을 낼 수 있는 MR Damper를 사용하여 지진하중을 받는 구조물의 반능동 제어게 대하여 연구하였다. MR Damper의 특성이 비선형이므로 이에 적합한 Sliding Mode Fuzzy Control(SMFC)기법을 사용하였으며 이때 SMFC 의 최적 설계를 위하여 Genetic Algorithm을 적용하였다. 제안된 제어기법의 실제 적용성을 검증하기 위하여 기존이 제어결과와 비교 검토하였으며, 그 결과로부터 MR Damper를 사용한 반능동 제어기법이 구조물의 진동제어에 매우 효과적임을 확인할 수 있었다.

  • PDF

Design and Control of MR Fan Clutch for Automotive Application (차량용 MR 홴 클러치 설계 및 제어)

  • Kim, Eun-Seok;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.795-801
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.