• Title/Summary/Keyword: controllable fluid

Search Result 68, Processing Time 0.025 seconds

Control Performance for Semi-active Mount Featuring Magneto-Rheological Fluid (반능동형 MR유체 마운트의 성능제어)

  • Kim, O.S.;Park, W.C.;Lee, H.C.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the semi active mount featuring Magneto rheological fluid(MR Fluid) is proposed. MR fluid is suspension of micro sized magnetizable particles in a fluid medium, and its apparent viscosity can be varied by the applied strength of magnetic field. When the controllable MR fluid is applied to mechanical devices, the devices provide simple, rapid response interfaces between electronic controls and mechanical systems. The MR fluid is applied in the conventional fluid mount for improving its performance of the mount's isolation effect. A appropriate size of the MR mount is designed and manufactured on the basis of Bingham model of MR fluid. In addition, the field dependent damping forces of MR mount are evaluated with respect to the input frequency variation.

  • PDF

Numerical Analysis and 2-D Experiment of Heat Transfer Coefficient on the Pintle of a Controllable Thruster Nozzle (고온 고압 환경에서 가변추력기용 핀틀의 열전달 계수에 대한 수치적 연구 및 2D 실험)

  • Park, Soon Sang;Moon, Young gi;Kawk, Jae Su
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.24-28
    • /
    • 2012
  • In this paper, 2-D experiment and steady-state computational fluid analysis were conducted for measuring the hear transfer coefficient of pintle type controllable thruster in high pressure and temperature. In case of 2-D experiment, transient liquid crystal technique was used for measuring heat transfer coefficient for the 2-D pintle model. The experimental result was used to validate the CFD result. The CFD results well predicted the heat transfer coefficient on the pintle surface except the nozzle downstream region, where the results by CFD was higher than experimental results. The CFD results were also compared with the result by Bartz equation and the it was shown that the Bartz equation overestimated the heat transfer coefficient on the nozzle throat as much as 80%.

The controllable damper for micro vibration suppression (미세 진동 흡수를 위한 가변형 댐퍼)

  • Kim, Ki-Duck;Sim, Won-Chul;Jeon, Do-Young;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3289-3291
    • /
    • 1999
  • The vibration and impact hinders the movement of micro dynamic system. The controllable micro damper is a solution for this problem. In this paper, the controllable micro damper for MR(Magneto - Rheological) Fluid is designed and fabricated using bulk micromachining process and organic bonding technique. The damping constant of micro MR damper changes according to input magnetic field. The response of the micro MR damper is measured and the experimental results are compared.

  • PDF

A Modeling of a Variable-damping Mount Using Magneto-Rheological Fluid (자기점성유체를 이용한 가변감쇠 마운트의 모델화)

  • 안영공;양보석;삼하신
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.141-146
    • /
    • 2001
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of 1-20 (m in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of 20 - 40 vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and performance of the mount was investigated experimentally. Furthermore, the Properties of the MR Mount on experimental study were explained analytically by mechanical model of the MR mount.

  • PDF

Torsional Vibration Damper Using Magneto-Rheological Fluid (MR 유체를 이용한 비틀림진동 감쇠기)

  • 안영공;신동춘;양보석;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.313-317
    • /
    • 2001
  • Magneto-Rheological fluid (MR fluid) is known as a class of functional fluid with controllable apparent viscosity of the fluid by the applied magnetic field strength. Extensive researches with the functional fluids have been done on applications of the fluid to mechanical components such as suspension, absorber, engine mount, clutch, break, valve, etc. In this study, a new torsional damper using MR fluid is proposed, and the response property of the damper was theoretically investigated. The present damper is quit effective for reducing the driveline vibration in a wide range of the engine speed.

  • PDF

A Modeling of a Variable-damping Mount Using MR Fluid (MR 유체를 이용한 가변 감쇠 마운트의 모델화)

  • Ahn, Young-Kong;Tsuchiya, Takashi;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1338-1343
    • /
    • 2000
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of $1{\sim}20mm$ in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of $20{\sim}40$ vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and its performance was investigated experimentally. Furthermore, the properties of the MR Mount on experimental Study were explained analytically by mechanical model of the MR mount.

  • PDF

Control Strategy for Seismic Responses of Cable-Stayed Bridges Using MR Fluid Dampers (MR 유체 감쇠기률 이용한 사장교의 지진응답 제어 기법)

  • Jung, Hyung_-Jo;Moon, Yeong-Jong;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.149-156
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control- structure interaction. In this study, magnetorheological (MR) fluid dampers, which belong to the class of controllable fluid dampers, are proposed as the supplemental damping devices, and a clipped-optimal control algorithm, shown to perform well in previous studies involving MR fluid dampers, is employed. The dynamic model for MR fluid dampers is considered as a modified Bouc-Wen model, which is obtained from data based on experimental results for large-scale dampers. Numerical results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.

  • PDF

A New Type Speaker Utilizing a Magneto-rheological Fluid Diaphragm (자기유변유체 다이어프램을 이용한 새로운 타입의 스피커)

  • Park, Jhin Ha;Yoon, Ji Young;Kim, Seon Hye;Lee, Tae Hoon;Lee, Soo Hyuk;Choi, Seung Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.182-188
    • /
    • 2017
  • In this work, a new type speaker which features various resonant frequencies is proposed utilizing a magneto-rheological (MR) fluid and its performance is evaluated in terms of the change of the field-dependent sound pressure level. In order to achieve this goal, a whole concept of the speaker system is firstly discussed and subsequently a controllable diaphragm is made using MR fluid whose rheological properties such as viscosity are controllable by the magnitude of magnetic field. Then, the proposed speaker system consisting of the inner structure and the squeeze mode type of MR diaphragm is established in an anechoic room The effectiveness of the proposed speaker system is experimentally evaluated at two different conditions; with and without the magnetic field. It is shown from experimental tests that the sound pressure level at different sound source can be controlled which is not able to achieve using one conventional speaker system.

Ultraprecision Polishing Technique for Micro 3-Dimensional Structures using ER Fluids (ER 유체를 이용한 미세3차원 행상의 초정밀연마)

  • 김욱배;이상조;김용준;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.134-141
    • /
    • 2002
  • The ER fluid can be one of efficient materials in ultraprecision polishing for optics, ceramics and semiconductors because of electrically controllable apparent viscosity. To finish small 3 dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, workpiece and auxiliary electrode is described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress, and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which is also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool is worked out considering the non-uniform electric field. Finally, Pyrex glass is polished using the mixture of the ER fluid and abrasive particles, and the effect of the electric field strength is evaluated.

Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation (차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰)

  • Kim, Eun-Seok;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.500-505
    • /
    • 2009
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological (MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

  • PDF