• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.036 seconds

Electrically-induced actuation for open-loop control to cancel self-excitation vibration

  • Makihara, Kanjuro;Ecker, Horst
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.189-206
    • /
    • 2012
  • This paper focuses on the actuation system combined with a piezoelectric transducer and an electric circuit, which leads to a new insight; the electric actuation system is equivalent to mechanical variable-stiffness actuation systems. By controlling the switch in the circuit, the electric status of the piezoelectric transducer is changed, and consequently a variable-stiffness mechanism is achieved on the electric actuator. This proposed actuator features a shift in the equilibrium point of force, while conventional electrically-induced variable-stiffness actuators feature the variation of the stiffness value. We intensively focus on the equilibrium shift in the actuation system, which has been neglected. The stiffness of the variable-stiffness actuator is periodically modulated by controlling the switch, to suppress the vibration of the system in an open-loop way. It is proved that this electric actuator is equivalent to its mechanical counterpart, and that the electrical version has some practical advantages over the mechanical one. Furthermore, another kind of electrically-induced variable-stiffness actuator, using an energy-recycling mechanism is also discussed from the viewpoint of open-loop vibration control. Extensive numerical simulations provide comprehensive assessment on both electrically-induced variable-stiffness actuators employed for open-loop vibration control.

Vibration Control of Condensate Motors in Nuclear Powerplant By Bearing Redesign (베어링 재설계에 의한 원전 COP motor의 진동 제어)

  • Lim, Do-Hyeong;Kim, Won-Hyun;Lee, Jong-Moon;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the summary of control of abnormal vibration found in the COP motors of a nuclear power plant. All six identical units of COP pump-motor assemblies showed unstable vibration pattern of which one or two showed higher vibration enough to exceed the allowable level from the installation stage. Many trials of test, measurement, overhaul and replacement had been repeated to investigate and solve the problem but only to reach unsatisfactory settlement. Recently several times of site tests are made and followed by significant diagnostic actions in which the authors group participated. It was found that the coupled shafting system of motor and pump is in close resonance with the $1^{st}$ shaft rotating speed. Redesign of topside motor bearing clearance is made to increase bearing stiffness and hence to avoid the resonance which consequently led to reduce the troubled vibration to allowable and stable status.

  • PDF

Fuzzy Controller Design for Active Vibration Isolation System Using Air-spring (공기스프링을 이용한 능동 방진 시스템의 퍼지 제어기 설계)

  • Yang, Xun;An, Chae-Hun;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.185-190
    • /
    • 2007
  • In recent days, vibration isolation system is mostly required in precise measurement and manufacturing system to reduce vibration due to external disturbances and internal actuators. Among all the vibration isolation systems, air spring is widely used because of its low resonant frequency and high damping ratio. In this study, we first analyze the passive air-spring system using leveling valve, and then design the active vibration isolation system. Because the non-linearity of pneumatic characteristics, we try to design the fuzzy controller which is better than PID controller at complex and non-linear system, and then compare them both in experiment and simulation.

  • PDF

The Effect of Active Chassis Vibration Control on the Engine Booming Noise (능동 샤시 진동 제어가 실내 엔진 부밍 소음에 미치는 영향)

  • 정병보;박만복;이용욱;박영진;이종원;강구태;채창국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.991-995
    • /
    • 2002
  • The engine booming noise heard inside a vehicle's cabin is due to the engine vibration that's transferred to the chassis in the form of structural vibration and it often causes discomfort to the passenger. In an effort to seek out the possible relation between the engine booming noise and the engine vibration of a vehicle, a position on the engine mount was selected and the vibration transmission through the position was attenuated to observe the corresponding change in the noise level inside the cabin. A system consisting of an actuator and a hybrid controller that has both the feed-forward and feed-back capabilities was developed in order to carry out the experiment.

  • PDF

Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump (가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

Vibration diagnosis for a rotating machinery using multiple sensors (다중 센서를 이용한 회전 기계의 진동 진단에 관한 연구)

  • 김기환;박영준;김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.852-855
    • /
    • 1997
  • In this paper, the vibration diagnosis system of a rotating machinery is introduced, in which the vibration signals of multiple accelerometers and displacement sensors are used combinedly as input parameters and their characteristics of the vibration response and mutual relationships between each sensor signal are considered to improve the reliability of the diagnosis system. The fuzzy logic is utilized for inferencing the fault from the vibration signal patterns.

  • PDF

A Vibration Control of the Motor and the Pump by Avoiding Resonance (공진회피에 의한 모터와 펌프의 진동제어)

  • 김희원;주원호;정균양
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.148-153
    • /
    • 1998
  • A resonance is the one of major reasons of vibration problems occurred in industrial fields. To reduce vibration level due to resonance, structure reinforcements or change of the dynamic characteristics is generally applied. In this paper, the troublesome vibration levels of the motor shaft and auxiliary condensate pump are reduced by avoiding resonance.

  • PDF

OPTIMAL DESIGN OF THE MULTIPLAYER DAMPING MATERIALS USING EQUIVALENT MODELING

  • Hur, D.J.;Lee, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • The viscoelastic layer material is widely used to control the noise and vibration characteristics of the panel structure. This paper describes the design technology of the effective vibration damping treatment using the concept of the equivalent parameter of viscoelastic layer materials. Applying the equivalent parameter concepts based on theories of shell, it is possible to simulate the finite element analysis of damping layer panel treatments on the vibration characteristics of the structure. And it is achieved the reduced computational cost and the optimal design of topological distribution for the reduction of vibration effect.

The Evaluation of Human Vibration Effect on T-50/A-50 Pilot (T-50/A-50 조종사의 인체 진동 영향성 평가)

  • Moon, Seong-Wook;Cho, Dae-Hyeon;Kim, Young-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.546-549
    • /
    • 2004
  • The T-50/A-50 Golden Eagle was developed for a supersonic trainer and light combat aircraft. At the design stage, vibration control plans were established and applied. For cockpit vibration, crew comfort vibration level was defined by the requirement of MIL-A-8892. It is found that the T-50/A-50 meets the requirement of cockpit vibration from the flight test data analysis. This paper contains the results of cockpit vibration analysis using the flight test data and the results of human vibration analysis lot the pilot inside aircraft. The human vibration level of pilot is increased as dynamic pressure is increased and at the specific high dynamic pressure, the ride comfort indicates 'a little uncomfortable'. Overall analysis results show that the vibration level of T-50/A-50 cockpit is tolerable and not critical for pilot's comfort.

  • PDF

A Controllers Comparison Experiment For Active-mount Control (능동마운트 제어를 위한 제어기 비교 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Kim, Ho-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.324-329
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

  • PDF