• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.029 seconds

Active Control Experiments on High-speed Elevator Vibrations (고속 엘리베이터 능동진동제어 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.325-332
    • /
    • 2011
  • This paper is concerned with the active control experiments on elevator vibrations by means of the active roller guide. To this end, a roller guide was designed using a voice-coil actuator and linear guide. A simple proportional control algorithm combined with the band-pass filter was implemented using the DSP. Based on the initial experiments, a new control system which can handle lateral and front-back vibrations of elevator was built and tested using the elevator test tower. The experimental results show that the elevator vibrations are reduced by the active control technique.

Experiment of a Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam and Performance Analysis (유연빔의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.634-639
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

  • PDF

A Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam: Experiments and Its Performance Analysis (유연보의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.651-657
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising Possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

Digital control of high speed robot arm vibration (고속 로보트 팔 진동의 디지탈 제어)

  • 박노철;하영균;박영필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.6-11
    • /
    • 1988
  • Alight-weight robot arm carrying a payload is modelled as a cantilever beam with a tip mass subjected to a high speed rotation. Equations of Motion, for modal control, are represented as discrete state variable form. Digital optimal control law with observer is developed to suppress the arm vibration and control the position of the joint angle. The effects of the number of controlled modes, weighting factors of the performance index, reference rotation time, and sampling time on the control performance are analyzed by computer simulation and experiments.

  • PDF

Base Acceleration Feedforward Control For An Active Magnetic Bearing System Subject To Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 피드포워드 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.399.2-399
    • /
    • 2002
  • This paper concerns on a non-rotating single-DOF beam-active magnetic bearing(AMB) system subject to arbitrary shaped base motion. In such a system, it is desirable to retain the beam within the predetermined air-gap under foundation excitation. Motivated form this, an adaptive acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate the effectiveness of the acceleration feedforward control.

  • PDF

A Method to Prevent Transfer Device of Image Stabilizer from Blunting by Artificial Vibration (가진입력에 의한 손떨림 보정용 이송장치의 둔화현상 방지대책)

  • Yeom, Dong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1076-1079
    • /
    • 2009
  • This article deals with an optical image stabilizer which moves an image sensor in the direction of cancelling the vibration caused by hand shaking to prevent a photographed image from blurring. The ball-guide way method adopted as a transfer device of the image sensor is easy to be manufactured because of its simple structure and is suitable to minimize the friction between mechanisms, but has weakness of a chance of physical defect such as groove and rising. In case that the movement of the transfer device equipped with the image sensor is blunted because a ball is stuck in defects of guide way, the performance of the image stabilizer falls down drastically. We propose a method to prevent the transfer device from blunting by applying artificial vibration. At this time, the artificial vibration should be designed under consideration of dynamic characteristics and specifications of the system to be discriminated from the vibration caused by hand shaking.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.587-595
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC(macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches

  • Foda, M.A.;Alsaif, K.A.
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.111-130
    • /
    • 2012
  • Satellites with flexible lightweight solar panels are sensitive to vibration that is caused by internal actuators such as reaction or momentum wheels which are used to control the attitude of the satellite. Any infinitesimal amount of unbalance in the reaction wheels rotors will impose a harmonic excitation which may interact with the solar panels structure. Therefore, quenching the solar panel's vibration is of a practical importance. In the present work, the panels are modeled as laminated composite beam using first-order shear deformation laminated plate theory which accounts for rotational inertia as well as shear deformation effects. The vibration suppression is achieved by bonding patches of piezoelectric material with suitable dimensions at selected locations along the panel. These patches are actuated by driving control voltages. The governing equations for the system are formulated and the dynamic Green's functions are used to present an exact yet simple solution for the problem. A guide lines is proposed for determining the values of the driving voltage in order to suppress the induced vibration.

An Experimental Study on the Building Vibration Control Using Orificed Fluid Dampers (오리피스 유체 댐퍼를 이용한 건축 구조물 진동제어의 실험적 연구)

  • Chung, Tae-Young;Lim, Chae-Wook;Kim, Byung-Hyun;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.469-477
    • /
    • 2002
  • An orificed fluid damper(OFD) having the capacity of about 2 tons was designed and fabricated, and series of tests were performed to grasp the fundamental performance characteristics of it. Several important findings were observed and introduced in this paper. It was applied to a 6-story steel structure under random excitation and seismic excitation for the confirmation of its validity on structural vibration absolution. The experimental results demonstrated that the addition of an OFD to the test structure is very effective in reduction of vibration level of the higher modes as well as the fundamental mode. Maxwell model was adopted to describe the frequency-dependent characteristics of the fabricated OFD and the numerical simulation was carried for the test structure. It was confirmed that the experimentally and numerically simulated results agree well.

Active Vibration Control of Slewing Smart Beam (회전지능보의 능동진동제어)

  • Nam, Sang-Hyun;Kwak, Moon-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.257-262
    • /
    • 2000
  • This research is concerned with the active vibration control of slewing smart structures subjected to rotating disturbance. When cantilever beam rotates about axes perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates after the slewing ends. In this paper, the analytical model for a single slewing flexible beam with surface bonded piezoelectric sensor and actuator is developed using the Hamilton's principle with discretization by the assumed mode method. The theoretial model is verified by the experimental open loop frequency response data. The controller is designed for residual vibration suppression after slewing. The designed cotroller is a positive position feedback (PPF) controller for controlling the first mode vibration.

  • PDF