• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.043 seconds

A Study on Dynamic Behaviour of Single Cylinder Reciprocating Compressor by Joint Simulation of Flexible Multi-body Dynamics and Electromagnetic Circuit (유연체 동역학 모델과 전력전자 회로의 연동해석을 통한 단기통 왕복 압축기 거동해석에 관한 연구)

  • Sung, Won-Suk;Hwang, Won-Gul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2012
  • The characteristics of vibration and noise of a compressor used for electric appliances have significant influence on the quality of the products. For improvement on the quality of electric appliances, investigations for understanding the dynamic behaviour of the compressor are essential. Since Virtual Lab for the dynamics model and MAXWELL for the electromagnetics model are separate software programs with no interface, the joint simulation of the models could not be performed. This study suggests a way to develop the compressor model capable of the joint simulation with MATLAB/SIMULINK linking a flexible multi-body dynamics model, a torque model, and an electricity control model. The compressor model is found to be able to perform I/O data transfer among the sub-models and joint simulation. The simulation results of the flexible body and rigid body dynamics models were compared to check availability of the joint simulation system. In addition, the simulated vibration and driving torque of the compressor mechanisms were compared with measurements. Through the simulations, the influence of springs and LDT on the dynamic behaviour of the compressor was examined. This study examines the influence of the dynamic behaviour of the compressor mechanisms through joint simulation of the flexible multi-body dynamics model and electromagnetic circuit allows analysis.

A Study about Appraise on Acoustic Performance of small-scaled Multi-Purpose Hall, using Auralization (가청화를 이용한 소규모 다목적 홀의 음향 성능평가에 관한 연구)

  • Ju, Duck-Hoon;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.148-152
    • /
    • 2007
  • In recent days, on account of the cultural development and the improvement of citizen's consciousness level, it is the real situation that the construction of small-scaled Multi-Purpose Hall where various cultural events could be performed, is on increasing. However, since the most of Multi-Purpose Hall had been designed and built up without any consideration on Acoustic Factor, many problems are on occurring thereat. Since those small-scaled Multi-Purpose Hall have been mostly used with the finishing material which contains a high degree of Acoustic Absorption indiscreetly, both diffusion and reflection of sound are not establishing properly, and because thereverberation of sound is very low, in case of musical performance by musical instrument, its sound hears too arid and stiff, there occurs some acoustic defect such as it becomes difficult for music appreciation with sufficient timbre, so that the capability improvement on the matter is urgently requiring situation. Therefore, this Study has tried to seize the satisfaction level about the small-scaled Multi-Purpose Hall after betterment of the acoustic performance by appraise the acoustic condition of the Hall, using Auralization Technique that can experience Virtual Acoustic Field regarding to the small-scaled Multi-Purpose Hall as its object. It is deemed that such research result could be practically used as the useful material which enables to bring a reduction effect of construction cost as well asenhancement of the acoustic performance through its presupposition?control on the acoustic problem when construction or renovation of other similar small-scaled Multi-Purpose Hall in the future.

  • PDF

A study on the nonlinearity in bio-logical systems using approximate entropy and correlation dimension (근사엔트로피와 상관차원을 이용한 비선형 신호의 분석)

  • Lee, Hae-Jin;Choi, Won-Young;Cha, Kyung-Joon;Park, Moon-Il;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.760-763
    • /
    • 2007
  • We studied how linear and nonlinear heart rate dynamics differ between normal fetuses and uncomplicated small-forgestational age (SGA) fetuses, aged 32-40 weeks' gestation. We analyzed each fetal heart rate time series for 20 min and quantified the complexity (nonlinear dynamics) of each fetal heart rate (FHR) time series by approximate entropy (ApEn) and correlation dimension (CD). The linear dynamics were analyzed by canonical correlation analysis (CCA). The ApEn and CD of the uncomplicated SGA fetuses were significantly lower than that of the normal fetuses in all three gestational periods (32-34, 35-37, 38-40 weeks). Canonical correlation ensemble in SGA fetuses is slightly higher than normal ones in all three gestational periods, especially at 35-37 weeks. Irregularity and complexity of the heart rate dynamics of SGA fetuses are lower than that of normal ones. Also, canonical ensemble in SGA fetuses is higher than in normal ones, suggesting that the FHR control system has multiple complex interactions. Along with the clear difference between the two groups' non-linear chaotic dynamics in FHR patterns, we clarified the hidden subtle differences in linearity (e.g. canonical ensemble). The decrease in non-linear dynamics may contribute to the increase in linear dynamics. The present statistical methodology can be readily and routinely utilized in Obstetrics and Gynecologic fields.

  • PDF

A Tuned Liquid Mass Damper(TLMD) for Controlling Bi-directional Responses of a Building Structure (건축구조물의 2방향 진동제어를 위한 동조액체질량감쇠기)

  • Heo, Jae-Sung;Park, Eun-Churn;Lee, Sang-Hyun;Lee, Sung-Kyung;Kim, Hong-Jin;Cho, Bong-Ho;Jo, Ji-Seong;Kim, Dong-Young;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.345-355
    • /
    • 2008
  • This paper presents a design of a tuned liquid mass damper(TLMD) for controlling bi-directional response of high-rise building structure subjected to windload. The proposed damper behaves as a tuned mass damper(TMD) of which mass is regarded as the mass of a tuned liquid column damper(TLCD) and the case wall of the TLCD itself in one direction and the TLCD in the other direction. Because the proposed device has coupled design parameter along two orthogonal directions, it is very important to select designing components by optimal fine tuning. In the designing TLMD, for easy maintenance, the rubber-bearing with small springs was applied in TMD direction. In this study, the Songdo New City Tower 1A in Korea, which has been designed and constructed two TLCDs in order to control bi-directional response, was chosen as the model building structure. The results of rotation test proved the effectiveness of bi-directional behavior of TLMD.

The Development and Application of Sound Quality Index for the Improving Luxury Sound Quality of Road Vehicle Power Window System (차량 윈도우 리프트 음질 고급감 향상을 위한 음질 지수 제작 및 개선에의 응용)

  • Kim, Seonghyeon;Park, Dong Chul;Jo, Hyeonho;Sung, Weonchan;Kang, Yeon June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • With the increasing the importance of emotional quality of vehicle, the sound quality of systems with electric motor components has become increasingly important. Electric motors are used for windows, seats, sun roof, mirrors, steering columns, windshield wiper and climate control blowers, etc. In this paper, a study was conducted to identify sound quality factors that contribute to customer's satisfaction and preference of the window lift system. Jury test for subjective evaluation was carried out and sound quality index was developed. Averaged sound pressure level and sharpness were significant factors when glass moves down. Also, maximum loudness at stop section and averaged loudness were significant factor when glass moves up. Next, noise source identification was carried out using beam forming method during glass transferred section and impulsive noise at stop section. Several improvement methods were applied using the source identification result. And finally, the degree of sound quality improvement was judged using sound quality index.

Quantitative Assessment of the Fastening Condition and the Crack Size with Using Piezoceramic(PZT) Sensors (압전소자를 이용한 볼트토크 및 크랙의 정량적평가에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.603-606
    • /
    • 2006
  • We present a study on the development of a practical and quantitative technique for the assessment of the structural health condition with using piezoceramic(PZT) sensors. The electro-impedance-based technique with the PZT patches is very sensitive for evaluation of the incipient and small damage in a high frequency range, and however the commonly traditional modal analysis method is effective only for considerably larger damages in low frequency range. The paper presents the technique in detecting and characterizing real-time damage on the specimen that is an aluminum plate fastened with bolts and nuts by different torques and as well a plate with a crack. By using the special arrangement of the PZT sensors, the required longitudinal wave is generated through the specimen. A large number of experiments are conducted and the different conditions of the specimens, i.e. the location and extent of loosening bolts, and the plate with a crack are simulated. respectively. Since fixing and loosening the loosened bolt is controlled by a torque wrench, we can control exactly the experiment of the different torques. Compared with the simulated healthy condition, we can find whether or not there is a damage in the specimen with using an impedance analyzer with the PZT sensors. Several indices are discussed and used for assessing the different simulated damages. As for the location of bolt loosening, the RMSD is found to be the most appropriate index for numerical assessment and as well the RMSD shows strongly linear relationship for assessing the extent of the bolt loosening, and the frequency peak shift ${\Delta}F$ is used to assess the cracked plate. The possibility of repeatability of the pristine condition signatures is also presented and the appropriate frequency range and interval are uniquely selected through large numbers of experiments.

  • PDF

Unmanned Water Treatment System Based on Five Senses Technology to Cope with Overloading of Customized Smart Water Grid Machines (스마트워터그리드 맞춤형 기계과부하시 오감기술을 이용한 무인 수처리 시스템에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Jung, Yoon-Soo;Ahn, Tae-Hyoung;Lee, Hak-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.69-80
    • /
    • 2017
  • In or To use, manage, and preserve sustainable water resources for the current and future generations amid the threat of abnormal climate, it is necessary to establish a smart water grid system, the next-generation intelligent water management system. In this study, sensors, which make use of the five senses to watch, listen, and detect machine vibration, bearing temperature, machine operation sounds, current, voltage, and other symptoms that cannot be verified when the irrigation facilities are running, are used to establish various decision-making criteria appropriate to on-site situations. Based on such criteria, the unmanned conditions in the facilities were verified and analyzed. Existing technologies require on-site workers to check any defects caused by overloading of machines, which is the biggest constraining factor in the application of an unmanned control system for irrigation facilities. The new technology proposed in this study, on the other hand, allows for the unmanned analysis of the existence of machine vibration. This controls the decision-making process of any defect based on the analysis results, and necessary measures are taken automatically, resulting in improved reliability of the unmanned automation.

A Study on Valuation of Acoustic Performance about Dome-typed Gymnastics Training Floor utilizing Auralization (가청화를 이용한 돔형 체조연습장의 음향 성능평가에 관한 연구)

  • Yun, Jae-Hyun;Ju, Duck-Hoon;Jung, Eun-Jung;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.132-136
    • /
    • 2007
  • In case of indoor gymnastics training floor, in view of its characteristics, since it is simultaneously required the related smooth communication between the coach and the player, also the acoustic performance regarding to the Clearness of Music, besides the sport activity, the consideration about the acoustic character has entered the stage as an indispensable element. On such viewpoint, on the object of the recently built dome-typed gymnastics training floor, after making the optimized acoustic design with the remodeling through acoustic simulation, by means of measurement and valuation on human's psychological(sensual) degree utilizing Auralization that enables to experience the virtual sound field at the stage of design, this thesis has attempted to survey of the acoustic satisfaction degree and its reaction about the gymnastics training floor. As the result of investigation about the research on the space of object, it could be known that the valuation regarding to the acoustic performance of 'After-Improvement' was distinctly more refined than that of 'Before-Improvement'. It is now considering that such result of the study can be utilized as the useful data which enables to improve the retrenchment effect of the construction cost as well as the acoustic capability, by means of the prediction control on the acoustic problem from the stage of design, for the occasion when the similar indoor sport gymnasium is planning to build for the near future.

  • PDF

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

A study on High Frequency DC-DC Converter Drive using a Piezoelectric Transformer (압전 변압기를 이용한 고주파 DC-DC 컨버터 구동에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.476-484
    • /
    • 2010
  • Recently, as the piezoelectric transformer technology develops, piezoelectric transformer may become a variable alternative to magnetic transformers in various applications. Because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, linkage flux, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. In this paper, the switching mode power supply of about 87.2[KHz] is driven by the multilayer thickness vibration mode piezoelectric transformer and the DC to DC converter drive circuit using an electrical equivalent circuit is proposed. Also, it was possible to drive power source device of the high-luminance LED by propose circuits.