• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.029 seconds

Design of Fault Tolerant controller for Electromagnetic Suspension System (상전도 부상 시스템의 내고장성 제어기 설계)

  • Jang, Seok-Myeong;Seong, So-Yeong;Seong, Ho-Gyeong;Jo, Heung-Je
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.778-788
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a fault-tolerant control scheme with a dynamic compensator for the failure of the choppers, gap sensors and acceleration sensors in electromagnetic suspension system. The advantage of the proposed control method are demonstrated through simulation and experimental results for the levitation characteristics when the failures of the chopper and sensors occur, respectively.

  • PDF

Antisymmetric S-curve Profile for Fast and Vibrationless Motion (고속 저진동 운동을 위한 비대칭 S-커브 프로파일)

  • Rew Keun-Ho;Kwon Jeong-Tae;Park Kyoung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1012-1017
    • /
    • 2006
  • By breaking the symmetry of the velocity profile in the S-curve, we developed a fast starting and smooth ending motion profile, named asymmetric S-curve(AS-curve). The problem for generating motion profile is formulated, and the algorithm for the AS-curve is derived and the flow chart of the AS-curve is illustrated. By various simulations, the derived algorithm is tested and shows the validity. This AS-curve can be applied to the high precision machines where fast and vibrationless motion is required in the near future.

Two-Stage Sliding Mode Controller for Bending Mode Suppression of a Flexible Pointing System (유연성 포인팅 시스템의 진동모드 보상을 위한 2단계 슬라이딩 모드 제어기)

  • 박장현;김경완;이교일;김학성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.971-976
    • /
    • 1996
  • A flexible pointing system mounted on top of a vehicle suffers from performance degradation due to bending vibrations as the vehicle runs on a bump course. In order to improve the pointing performance, the pointing structure's vibrations should be suppressed. In this paper, a nonlinear controller is designed to control the tip position of the pointing system while actively suppressing the vibrations. To cope with high order dynamics and nonlinearities of the plant and hydraulic actuating system, a two-stage sliding mode controller is devised. The desired actuating pressure is obtained in the first stage and then the in put current In the hydraulic servo system is computed to generate the pressure. The simulation results show the effectiveness of this scheme and improvements in pointing accuracy.

  • PDF

Vibration Characteristics and Tension Control of a Wire in WEDM (와이어 방전가공기용 와이어의 진동 특성과 장력 변동 저감을 위한 연구)

  • Chae, Ho-Jung;Lee, Seung-Yeop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.86-92
    • /
    • 2001
  • Vibrational characteristics and tension fluctuation of a translating wire in WEDM are the main problems to deteriorate the cutting accuracy and processing performance. In this paper, we analyze natural frequencies of the wire used in WEDM, both theoretically and experimentally. To reduce the tension variation of the wire, which directly affects cutting performance, we have designed a simply tension reduction device using springs and rollers. It is shown that tension fluctuation is reduced about 35% using the passive tension controller.

  • PDF

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Microphone Array Design for Noise Source Imaging (소음원 영상화를 위한 마이크로폰 배열 설계)

  • ;Glegg, Stewart A.L.
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.255-260
    • /
    • 1997
  • This paper describes 3-dimensional volume array of 4 microphones including a reference microphone which is capable of imaging wideband noise source position in 2-dimensional image plane. The cross correlation function and corresponding imaging function between a reference microphone and other microphone, are derived as a function of noise source position. The magnitude of the imaging function gives noise source mapping in image plane. Since the image plane is selective from a rectangular and a cylindrical plane, noise source position information such as range and bearing relative to the array is identified very much easily. Simulation results for typical source configurations confirms the applicability of the proposed array in noise control field.

  • PDF

Study on the Reduction Method of Occurred Cavitation in a System (시스템내 발생하는 캐비테이션 저감방법에 관한 연구)

  • Park, Sang-Eun;Roh, Hyung-Woon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.45-50
    • /
    • 2004
  • Two phenomena often encountered in liquid flow, which were completely absent in gas or vapor flow, were cavitation and flashing. These phenomena were of significant interest in any comprehensive discussion of control valves or contracted devices since their occurrence would affect the device sizing procedures, might introduce noise and vibration, and also may limit the life expectancy of device components and the immediate downstream piping. Thus, this study aimed to find the reduction method of occurred cavitation in system by the computer simulation. A derivative six model with different dimensions of cavity were adopted. From the results, it was found that the length of the cavity was mote important factor to reduce the pressure drop over the control valves or contracted devices than the depth of the cavity. And the pressures along the centerline of the contracted devices were dropped two times in the case of haying the large length (Lc=1.5D) of cavity.

Innovative modeling of tuned liquid column damper controlled structures

  • Di Matteo, Alberto;Di Paola, Mario;Pirrotta, Antonina
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.117-138
    • /
    • 2016
  • In this paper a different formulation for the response of structural systems controlled by Tuned Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it has been demonstrated that existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise description of the structural response. For this reason the recently proposed fractional formulation introduced to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures under base excitations. As demonstrated through an extensive experimental analysis, the proposed model can accurately capture structural responses both in time and in frequency domain. Further, the proposed fractional formulation is linear, hence making identification of the involved parameters extremely easier.

Tuning of TMDs for Control of Floor Vibration (건물 바닥판의 진동제어를 위한 동조질량감쇠기의 조율)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.204-211
    • /
    • 1998
  • Floors in a structure are often subject to periodic forces which induce excessive oscillations. For control of such oscillations, TMDs(Tuned Mass Dampers) have been widely used and prooved effective. But it is very difficult to estimate the natural frequency of a TMD when it is installed to a structure. Therefore to achieve the TMD properties that are required for satisfactory performances of the structure, it is necessary to tune the TMDs to the optimal state. This paper is intended to suggest the efficient tuning method for simple and economically designed TMDs and to investigate the validity of the method by installing TMDs to a real structure.

  • PDF