• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.033 seconds

Development of Simulation Model for Predicting Dynamic Behavior of Maglev Train (자기부상 열차 동특성 예측을 위한 해석 모델 개발)

  • Kim, Chi-Ung;Park, Kil-Bae;Lee, Kang-Wun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2585-2593
    • /
    • 2011
  • Maglev train system has been continuously received attention as it provides good ride quality and low noise and vibration level. Furthermore it is an eco-friendly transport system with little dust pollutant. However the dynamic performance of the vehicle has been influenced by the track layout and the structural stability of guideways and girders, etc. Especially the levitation control of magnetic module is the most important performance of the Maglev system and is very sensitive about the control algorithm and the parameters of the controller. In this paper, the co-simulation of the control and dynamic model has been proposed and the simulation results for the running simulation on the curve track has been shown.

  • PDF

Mathematical Modeling about Magnetic Attractive Force of Magnetic Bearing (자기베어링 구동용 전자석의 흡인력에 대한 수학적 모델링)

  • Choi, G.H.;Yang, J.H.;Choung, K.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.64-68
    • /
    • 2012
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration are very small comparing with mechanical bearings, it is very useful to high revolution machinery. In general, the magnetic attractive force function that is proportional to square of control current(x), and inversely proportional to square of an air gap(i) has been widely used. This paper proposed the new magnetic attractive force function that is proportional to cube of the control current, and inversely proportional to square of the air gap. The function was optimized to minimize the cost function that is the percentage of deviation about the change of a proportional constant(k), using the experimental data, ie, control currents and air gaps.

Design and control of the precision heat actuator using thermoelectric device (열전소자를 이용한 정밀 열구동기구의 설계 및 제어)

  • 서장렬;김선민;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.395-398
    • /
    • 1997
  • In the modem manufacturing system, to achieve the unmanned automation, the stability of accuracy is required through a long working period. The thermal deformation of precision machine is predominant in this long time stability. While grinding slender and long workpiece at cylindrical grinding machine, we support workpiece using steadies to prevent the vibration of workpiece. The thermal deformation of the machine by grinding and internal heat source cause processing errors, so the steadies for compensating the thermal deformation in real time are strongly needed. In order to compensate these thermal deformation and grinding processing errors, the device to determine the precise positioning having the stroke of 10.mu.m is necessary. This paper suggests design and make the device to determine the precise positioning using thermoelectric device, to investigate the control characteristics and presents the heat actuator will be very useful in machine tool.

  • PDF

Active Suspension System for a One-wheel Car Model Using Single Input Rule Modules Fuzzy Reasoning

  • Yoshimura, Toshio;Teramura, Itaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1275-1280
    • /
    • 2004
  • This paper presents the construction of an active suspension system of a one-wheel car model by using fuzzy reasoning. The car model is approximately described by a nonlinear two degrees freedom system subject to excitation from a road profile, and the active control force is constructed by actuating a pneumatic actuator, and the degradation of the performance due to the delay of the pneumatic actuator is improved by inserting a compensator. The fuzzy control is obtained by single input rule modules fuzzy reasoning, and the excitation from the road profile is estimated by using a disturbance observer. The experimental result shows that the proposed active suspension system much improves the performance in the vibration suppression of the car model.

  • PDF

An Efficient Method for the Mass Unbalance Analysis of a Rotor System Using FFT and Lissajous Diagram

  • Su, Hua;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1612-1617
    • /
    • 2004
  • Unbalance analysis is essential in the rotor system. However, some problems still remain in the aspects of computational efficiency and accuracy. In the present paper a new method is proposed for estimating the mass unbalance of a rotating shaft by using the vibration signals. This is an advanced new method for the detection of a mass unbalance and its phase position. Based on the signal processing with FFT, an estimator is designed to detect the mass of unbalance. And an improved Lissajous diagram is also introduced with statistical analysis, which make it possible to compute the phase position of the mass unbalance efficiently and arranged at a certain location of the shaft. The proposed method is demonstrated and validated through several test examples.

  • PDF

Experimental Study on the MR-Toggle Brace System for Vibration Control (지진응답 제어를 위한 MR-토글 가새 시스템의 실험적 연구)

  • Min Kyung-Won;Lee Myoung-Kyu;Kang Sang-Hoon;Lee Sang-Hyun;Hwang Jae-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.644-651
    • /
    • 2005
  • The purpose of this paper is to compare the control effect of toggle brace system having amplifying displacement mechanism with that of conventional brace system when the identical MR damper is applied to each system. The force-displacement and lone-velocity relationships of MR damper are obtained using harmonic load test and the analytical model for MR damper is presented. White noise excitation tests of a single degree of freedom system with MR-toggle brace system and MR-chevron system are conducted and the transfer functions of the systems are compared. Test results show that the control effect of the toggle system is superior to that of the conventional brace system.

  • PDF

Vibration Control of Flexible Linkage Mechanisms Using Piezoelectric Films (압전필름이용 유연 링키지 메카니즘의 진동제어)

  • Choe, Seung-Bok;Jeong, Jae-Cheon;Gu, Bon-Gwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 1992
  • A control methodology for suppressing the elastodynamic responses of high-speed flexible linkage mechanisms is presented by adopting the concept of smart structures featuring piezoelectric films. The dynamic modeling of the proposed mechanism is accomplished by employing a finite element formulation which accounts for dynamic motion in both inertial and elastic coordinates. The dynamics of piezoelectric actuators and sensors bonded on the original flexible structure are developed for one-dimensional beam in conjunction with the modal analysis. The linear optimal controller which consists of a feedback control law and a Luenberger observer is employed. Numerical simulation is performed to evaluate the improvement of elastodynamic responses.

  • PDF

End-point position control of a flexible arm by PID self-tuning fuzzy controller

  • Yang, G.T.;Ahn, S.D.;Lee, S.C.;Chonan, S.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.496-500
    • /
    • 1993
  • This paper presents an end-point position control of 1-link flexible robot arm by the PID self-tuning fuzzy algorithm. The governing equation is derived by the extended Hamilton's principle and based on the Bernoullie-Euler beam theory. The governing equation is solved by applying the Laplace transform and the numerical inversion method. The arm is mounted on the translational mechanism driven by a ballscrew whose rotation is controlled by dcservomotor. Tip position is controlled by the PID self-tuning fuzzy algorithm so that it follows a desired position. This paper shows the experimental and theoretical results of tip dispalcement, and also shows the good effects reducing the residual vibration of the end-point.

  • PDF

Design of a Dual-Drive Mechanism for Precision Gantry

  • Park, Heung-Keun;Kim, Sung-Soo;Park, Jin-Moo;Daehie Hong;Cho, Tae-Yeon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1664-1672
    • /
    • 2002
  • Gantry mechanisms have been widely used for precision manufacturing and material handling in electronics, nuclear, and automotive industries. Dual-drive servo mechanism is a way to increase control bandwidth, in which two primary axes aligned in parallel are synchronously driven by identical servo motors. With this mechanism, a flexible coupling (compliance mechanism) is often introduced in order to avoid the damage by the servo mismatch between the primary drives located at each side of gantry. This paper describes the design guidelines of the dual-drive servo mechanism with focus on its dynamic characteristics and control ramifications. That is, the effect on the system bandwidth which is critical on the system performance, the errors and torques exerted on guide ways in case of servo mismatch, the vibration characteristics concerned with dynamic error and settling time, and the driving force required at each axis for control are thoroughly investigated.

Effect of specific gravity and annual ring width on the acoustical properties of European lumber used in violin making (유럽산 바이올린 용재의 비중과 년륜폭이 소재의 음향적 성질에 미치는 영향)

  • 정우양;홍병화
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1999
  • This study was carried out to analyze the relationship between basic physical properties and acoustical characteristics of imported violin wood and to offer the information on raw material procurement and incoming-material quality control to domestic violin makers which have purchased most raw materials from European exporting countries at high expense. Equilibrium moisture content of European spruce with lower specific gravity after the prolonged storage was rather higher than that of European maple with higher specific gravity. The specific gravity of spruce increased with decreasing annual ring width, however, that of narrower annual ring. Increasement in specific gravity enhanced the dynamic Young's modulus of both wood species, but influenced the vibration energy loss by internal friction differently between two species. For dynamic MOE, qurater-sawn spruce was higher than the flat-sawn, but maple showed the reverse directional characteristics. Consequently, it would be well for violin makers to establish the standard for materials and quality control system to assure the quality of their violin products.

  • PDF