• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.026 seconds

A Performance Analysis of Active Mount with Moving-Coil type Electromagnetic Actuator Installed on the Elastic Foundation (탄성지지된 가동코일형 능동마운트의 성능 분석)

  • Jung, Woo-Jin;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.227-231
    • /
    • 2014
  • Underwater radiated noise is one of the vital factors in underwater weapon systems like submarine. A passive elastic mount is an effective reduction method for the vibration from a ship-board machinery transmitted to the hull which is radiated as noise outside the hull. A passive elastic mount shows the limitation on the vibration reduction and needs multi stage mounting system including double stage one to meet the required underwater radiated noise criteria. It is necessary for the multi stage mounting system to consider the large displacement in the underwater shock explosion. So it is difficult to apply the multi stage mounting system in submarine because of space limitation. Also recent navy sonar system are trying to have the capability to detect the ship-borne acoustic signals in the low frequency range. An alternative to the passive mount is an active mount with moving-coil type electromagnetic actuator based on a conventional rubber mount in the low frequency range. In the previous paper, 4 active mounts with moving-coil type electromagnetic actuator based on the rubber mount were installed on the hard floor of the facility, which means no consideration on the elastic foundation effect for the control of the active mounts was taken into account. In this study, an experimental performance analysis on the active mount was carried out using 4 active mounts installed on the cylindrical structure to investigate the elastic foundation effect.

  • PDF

Design of High Efficiency Differential Electromagnetic Type Transducer for Implantable Middle Ear System (이식형 인공중이 시스템을 위한 고효율 차동 전자 트랜스듀서의 설계)

  • Song, Byung-Seop;Ro, Chul-Kyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.171-182
    • /
    • 2002
  • The differential electromagnetic transducer for IME(implantable middle ear) system, which have two small permanent magnets glued with the same pole facing each other in the coil, has high vibration efficiency and does not influenced by external magnetic field. In this paper, using finite element method, highly efficient structure of the transducer was proposed and vibration force of the transducer was calculated by electromagnetic theory. And the necessary vibration force of transducer to transmit the sound signal to inner ear when the transducer is attached at stapes was calculated and the design parameters of the transducer were investigated. Using the parameters, the differential electromagnetic transducer was manufactured in small size to implant in confined human middle ear. And it was examined by unloaded and loaded vibration experiment using temporal bone sampled from cadaver.

A Study on the Control System of Dynamic Vibration Absorber for Ship Superstructure (선박용 동흡진기 시스템에 관한 연구 - 중력진자식 및 원심진자식 동흡진기에 대한 -)

  • S.S. Kim;S.Y. Han;J.K. Eom;M.H. Hyun;J.H. Kim;M.H. Kim;D.K. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.1-18
    • /
    • 1995
  • This paper deals with the vibration absorbers of gravitational and centrifugal pendulum types for vibration controls of ship's substructures such as radarmasts, bridgewings and funnels. The mathematical model of such a vibrating system with an absorber is described as a 2 degree of freedom system and an efficient formulation for optimum design of the absorber is presented. For investigation applicability of the two types of the absorbers to a structure system, numerical calculations and experiments hove been performed with variation of mass ratios for each type. According to the results of investigations, the vibration absorber of gravitational type proved to be more useful and efficient than one of centrifugal pendulum type in a view point of mass ratio.

  • PDF

Stabilized Bragg grating sensor system for multiplexing vibration sensors of smart structures (스마트 구조물의 동시다점 진동 취득용 안정화된 광섬유 브래그 격자 센서 시스템의 개발)

  • Bang, Hyung-Joon;Kim, Dae-Hyun;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2004
  • For the application of structural health monitoring such as AE detection, a stabilized FBG sensor system with wide dynamic range was proposed. A tunable Fabry-Perot filter with narrow free spectral range(FSR) was used to simplify the multiplexing demodulator for FBG vibration sensors. Stabilization controlling system was also developed for the maintenance of maximum sensitivity of the sensors. In order to verify the performance of the proposed FBG vibration sensor system, we measured sensitivity, and the system showed the average sensitivity of 256 $n{\in}_{mas}/{\sqrt{Hz}}$. Finally, multi-points vibration tests using in-line FBG sensors were conducted to validate the multiplexing performance of the FBG system.

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

Effect of 125 Hz and 150 Hz vibrational frequency electric toothbrushes on the rate of orthodontic tooth movement and prostaglandin E2 levels

  • Anadha N. Gujar;Prashantha Govinakovi Shivamurthy
    • The korean journal of orthodontics
    • /
    • v.53 no.5
    • /
    • pp.307-316
    • /
    • 2023
  • Objective: To evaluate the effects of an electric toothbrush with vibrational frequencies of 125 Hz and 150 Hz on the orthodontic tooth movement (OTM) rate and the production of prostaglandin E2 (PGE2). Methods: Out of thirty patients (aged 18-25 years; 16 females and 14 males), ten patients each formed Group A and B, who used electric toothbrushes with 125 Hz and 150 Hz vibrations, respectively. The remaining ten patients (Group C) served as the control group and did not use electric toothbrushes. The rate of OTM and levels of PGE2 using microcapillary pipettes were calculated before the start of retraction (T0), on the 30th day (T1), on the 60th day (T2), and on the 90th day (T3) from the start of retraction in all the groups. Results: There was a statistically significant difference in the mean OTM values and PGE2 levels in all three groups at different time intervals, with the maximum difference seen in Group B compared to Group A and least in Group C at T1, T2 and T3. Conclusions: The rate of OTM and levels of PGE2 were highest in patients who used an electric toothbrush with 150 Hz mechanical vibration compared to those who used an electric toothbrush with 125 Hz mechanical vibration and least in patients who did not use an electric toothbrush. Mechanical vibration led to an increase in the PGE2 levels and accelerated the OTM.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Prognosis of Blade Icing of Rotorcraft Drones through Vibration Analysis (진동분석을 통한 회전익 드론의 블레이드 착빙 예지)

  • Seonwoo Lee;Jaeseok Do;Jangwook Hur
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Weather is one of the main causes of aircraft accidents, and among the phenomena caused by weather, icing is a phenomenon in which an ice layer is formed when an object exposed to an atmosphere below a freezing temperature collides with supercooled water droplets. If this phenomenon occurs in the rotor blades, it causes defects such as severe vibration in the airframe and eventually leads to loss of control and an accident. Therefore, it is necessary to foresee the icing situation so that it can ascend and descend at an altitude without a freezing point. In this study, vibration data in normal and faulty conditions was acquired, data features were extracted, and vibration was predicted through deep learning-based algorithms such as CNN, LSTM, CNN-LSTM, Transformer, and TCN, and performance was compared to evaluate blade icing. A method for minimizing operating loss is suggested.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

Experimental and analytical studies on stochastic seismic response control of structures with MR dampers

  • Mei, Zhen;Peng, Yongbo;Li, Jie
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.395-416
    • /
    • 2013
  • The magneto-rheological (MR) damper contributes to the new technology of structural vibration control. Its developments and applications have been paid significant attentions in earthquake engineering in recent years. Due to the shortages, however, inherent in deterministic control schemes where only several observed seismic accelerations are used as the trivial input and in classical stochastic optimal control theory with assumption of white noise process, the derived control policy cannot effectively accommodate the performance of randomly base-excited engineering structures. In this paper, the experimental and analytical studies on stochastic seismic response control of structures with specifically designed MR dampers are carried out. The random ground motion, as the base excitation posing upon the shaking table and the design load used for structural control system, is represented by the physically based stochastic ground motion model. Stochastic response analysis and reliability assessment of the tested structure are performed using the probability density evolution method and the theory of extreme value distribution. It is shown that the seismic response of the controlled structure with MR dampers gain a significant reduction compared with that of the uncontrolled structure, and the structural reliability is obviously strengthened as well.