• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.036 seconds

Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant (복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책)

  • Kim, Yeon-Whan;Kim, Jae-Won;Park, Hyun-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

Active Vibration Control of A Time-Varying Cantilever Beam Using Band Pass Filters and Artificial Neural Network (신경회로망과 능동대역필터를 이용한 시변 외팔보 능동 진동제어)

  • Hamm, Gil;Rhee, Huinam;Yoon, Doo Byung;Han, Soon Woo;Park, Jin Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.353-354
    • /
    • 2014
  • An active vibration control technique of a time-varying cantilever beam is proposed in this study. A simple in-house coil sensor instead of expensive commercial sensors was used to measure the vibrational displacement of the beam. Active band pass filters and artificial neutral net works detect the frequencies, amplitudes, and phases of the main vibration mode. The time constants of the low pass filter representing the positive position feedback controller are updated in real-time, which generates the control voltage input to actuate the piezoelectric actuator and suppress the vibration. An experiment was successfully performed to verify the algorithm for a cantilever beam, which fundamental natural frequency arbitrarily varies between 9 Hz ~ 18 Hz. The present active vibration suppression technique can be applied to variety of structures which undergoes large variation of dynamic characteristics while operating.

  • PDF

Control Characteristics of ER engine mount considering Temperature Variation (온도 변화에 따른 ER 엔진마운트의 제어 특성)

  • Song, Hyun-Jeong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.180-183
    • /
    • 2005
  • The engine mount of vehicle systems is role of support engine mass and isolate noise and vibration from engine disturbance forces. One of attractive candidates to achieve this goai is to utilize a semi-active ER engine mount. By applying this, we can effectively control damping force and hence the noise and vibration by just controlling the intensity of electric field. However, control performance of the engine mount may be very sensitive to temperature variation during engine operation. In this work, we Investigate dynamic performances of ER engine mount with respect to the temperature variation. In order to undertake this, a flow-mode type of ER engine mount is designed and manufactured. Displacement transmissibility is experimentally and numerically evaluated as a function of the electric field. The ER engine mount is then incorporated with full-vehicle model in order to investigate vibration control performance. After formulating the governing equation of motion, a semi-active controller is designed. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at various engine speeds are evaluated in the frequency and time domains.

  • PDF

Active vibration control of a flexible cantilever beam using Filtered-x LMS algorithm (Filtered-x LMS 알고리즘을 이용한 유연한 외팔보의 능동진동제어)

  • 박수홍;홍진석;김흥섭;오재응
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.107-113
    • /
    • 1997
  • This paper presents the active control of a flexible cantilever beam vibration. The cantilever beam was excitied by a steady-state harmonic and white noise point force and the control was performed by one piezo ceramic actuator bonded to the surface of the beam. An adaptive controller based on filtered-x LMS algorithm was used and the controller was defined by minimizing the square of the response of error sensor. In the experiment, gap sensor was used as an error sensor while the sinusoidal or white noise was applied as a disturbance. In the case of sinusoidal input, more than 20 dB of vibration reduction was achieved over all range of the natural frequencies and it takes 5 seconds to control the vibration at first natural frequency and 1 second at other natural frequencies. In the case of white noise input, 7 dB of vibration reduction was achieved at the first natural frequency and good control performance was achieved in the considered whole frequency range. Results indicate that the vibration of a flexible cantilever beam could be controlled effectively when the piezo ceramic actuator was used with filtered-x LMS algorithm.

  • PDF

Integration of health monitoring and vibration control for smart building structures with time-varying structural parameters and unknown excitations

  • Xu, Y.L.;Huang, Q.;Xia, Y.;Liu, H.J.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.807-830
    • /
    • 2015
  • When a building structure requires both health monitoring system and vibration control system, integrating the two systems together will be cost-effective and beneficial for creating a smart building structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration control can be integrated in real time to accurately identify time-varying structural parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other hand. The basic equations for the identification of time-varying structural parameters and unknown excitations of a semi-active damper-controlled building structure are first presented. The basic equations for semi-active vibration control of the building structure with time-varying structural parameters and unknown excitations are then put forward. The numerical algorithm is finally followed to show how the identification and the control can be performed simultaneously. The results from the numerical investigation of an example building demonstrate that the proposed method is feasible and accurate.

Whole-Body Vibration Exposure vis-à-vis Musculoskeletal Health Risk of Dumper Operators Compared to a Control Group in Coal Mines

  • Kumar, Vivekanand;Palei, Sanjay K.;Karmakar, Netai C.;Chaudhary, Dhanjee K.
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.73-77
    • /
    • 2022
  • Background: Whole-body vibration (WBV) exposure of coal mine dumper operators poses numerous health hazards. The case-control study was aimed at assessing the relative musculoskeletal health risk of dumper operators' exposure to WBV with reference to the nonexposed group. Methods: Measurements of WBV exposure were taken at the operator-seat interface using a human vibration analyzer for 110 dumper operators in three coal mines. This vibration measurement was supplemented by a questionnaire survey of 110 dumper operators exposed to WBV and an equal number of workers not exposed to WBV. The relative risk of musculoskeletal disorders (MSDs) has been assessed through the case-control study design. Results: ISO guidelines were used to compare the health risk. It was observed that the prevalence of pain in the lower back was 2.52 times more in the case group compared to the control group. The case group of Mine-2 was 2.0 times more prone to vibration hazards as compared to Mine-3. Conclusion: The case group is more vulnerable to MSDs than the control group. The on-site measurement as well as the response of the dumper operators during the questionnaire survey corroborates this finding.

Control Method of Wind Induced Vibration Level for High-rise buildings (초고층 건물의 풍가속도응답 조절 기법)

  • Kim Ji-Eun;Seo Ji-Hyun;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.375-382
    • /
    • 2005
  • In this paper, a practical control method of wind-induced vibration of high-rise buildings is presented in the form of resizing algorithm. In the structural design process for high-rise buildings, the lateral load resisting system for the building is more often determined by serviceability design criteria including wind-induced vibration level. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. The performance of the proposed method is evaluated by comparing wind-induced vibration levels estimated both from approximate techniques and wind tunnel test.

  • PDF

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

Vibration and Noise Control of Slab Using the Mass Type Damper (질량형 댐퍼를 이용한 바닥판의 진동 및 소음 저감)

  • Hwang, Jae-Seung;Park, Sung-Chul;Kim, Hong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.597-602
    • /
    • 2007
  • It is proposed to analyze the vibration of slab with MTMD and vibration-induced noise. Substructure synthesis is introduced to develope the interaction between the slab and MTMD which are defined in different space and acoustic power is obtained from the velocity field of slab. Numerical analysis is performed to show that the vibration and noise of slab can be reduced by MTMD. A living room of wall type apartment including the wall and MTMD is modeled and analyzed by FEM program Numerical analysis shows that the vibration and noise control effect is different depending on the location and mass ratio of MTMD. Futhermore, noise is more effectively reduced when the vibration of higher modes of slab are reduced rather than lower modes.

  • PDF

The Design of Adaptive Fuzzy Controller for Vibration Suppression

  • Kim, Seung-Cheol;Sul, Jae-Hoon;Park, Jae-Hyung;Lim, Young-Do;Park, Book-Kwi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.2-41
    • /
    • 2001
  • A torque transmission system, which is composed of several gears and couplings, is flexible. Therefore, the torsion vibration occurs when the motor speed abruptly changes. Consequently, for Accuracy characteristic response of motor, we must suppressed vibration. Therefore, vibration suppression is very important motor control. To vibration suppression, various control method have been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By feedback of the estimated torsion torque, the vibration can be suppressed The coefficient diagram method is used to design the filter and proportional controller.

  • PDF