• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.031 seconds

Robotic assembly of complicated flexible parts (산업용 로보트를 이용한 유연하고 형상이 복잡한 물체의 자동조립)

  • 권대갑;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.5-9
    • /
    • 1987
  • In this study, three insertion techniques vibration method, tactile sensor-assisted method and vision assisted method are developed for the insertion of electric contacts into connectors. In order to prove their Performances, a series of experiments were conducted for various shapes of el-ectric contacts. From the experimental results, three insertion methods are compared and their merits are discussed in detail.

  • PDF

Performance Evaluation of Multi-Hazard Adaptive Smart Control Technique Based on Connective Control System (연결 제어 시스템 기반의 멀티해저드 적응형 스마트 제어 기술 성능 평가)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.97-104
    • /
    • 2018
  • A connected control method for the adjacent buildings has been studied to reduce dynamic responses. In these studies, seismic loads were generally used as an excitation. Recently, multi-hazards loads including earthquake and strong wind loads are employed to investigate control performance of various control systems. Accordingly, strong wind load as well as earthquake load was adopted to evaluate control performance of adaptive smart coupling control system against multi-hazard. To this end, an artificial seismic load in the region of strong seismicity and an artificial wind load in the region of strong winds were generated for control performance evaluation of the coupling control system. Artificial seismic and wind excitations were made by SIMQKE and Kaimal spectrum based on ASCE 7-10. As example buildings, two 20-story and 12-story adjacent buildings were used. An MR (magnetorheological) damper was used as an adaptive smart control device to connect adjacent two buildings. In oder to present nonlinear dynamic behavior of MR damper, Bouc-Wen model was employed in this study. After parametric studies on MR damper capacity, optimal command voltages for MR damper on each seismic and wind loads were investigated. Based on numerical analyses, it was shown that the adaptive smart coupling control system proposed in this study can provide very good control performance for Multi-hazards.

Defect Detection of Ship Engine using duplicated checking of vibration-data-distinction Method and Classification of fault-wave (이중화된 진동 정보 판별 기법과 고장 파형 분류를 이용한 선박 엔진의 고장 감지)

  • Lee, Yang-Min;Lee, Kwang-Young;Bae, Seung-Hyun;Shin, Il-Sik;Jang, Hwi;Lee, Jae-Kee
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.671-678
    • /
    • 2009
  • Recently, there have been some researches in the equipment fault detection based on shock and vibration information. Most research of them is based on shock and vibration monitoring to determine the equipment fault or not. Different with engine fault detection based on shock and vibration information we focus on detection of engine for boat and system control. First, it use the duplicated-checking method for shock and vibration information to determine the engine fault or not. If there is a fault happened, we use the integral to determine the error engine shock wave width and detect the fault area. On the other hand, we use the engine trend analysis and standard of safety engine to implement the shock and vibration information database. Our simulation results show that the probability of engine fault determination is 98% and the probability of engine fault detection is 72%

Suppression Control Method of Torque Ripple for IPMSM Utilizing Repetitive Control and Fourier Transformer

  • Hattori Satomi;Ishida Muneaki;Hori Takamasa
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.341-345
    • /
    • 2001
  • Recently, many examples of practical applications of the motors with reluctance torque, such as IPMSM, RM, etc. are reported. However, the problems of the torque ripple produced by the IPMSM, are also presented. The main reasons of the torque ripple generation are the structural imperfectness of the IPMSM and its control system, such as the cogging torque of the motor, the dead time of inverter, sensors offset, imbalance and non-linearity, and so on. In this paper, authors propose a suppression control method of the torque ripple for IPMSM utilizing the repetitive control with the Fourier transformer and a vibration signal detected by an acceleration sensor attached to the motor frame, considering periodicity of the motor torque ripple. An experimental system to simulate the compliant mechanical frame is constructed, and the effectiveness of the proposed method is confirmed by experimental results.

  • PDF

Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle (고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계)

  • 노승국;경진호;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

Active Control of a Ship Cabin Motion Using 3-DOF Parallel Robots (3자유도 병렬 로붓을 이용한 선실 운동의 능동제어)

  • 배종국;심호석;이재원;주해호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.116-123
    • /
    • 2004
  • The demand for the stable and comfortable cabin of a high speed passenger ship is increasing. The study on shipboard comfort has been mainly concentrated on the motion control of a whole hull body. In this study, however, a new control system operated by two parallel robots (3RPS, 3SPR) such as the active suspension system of motor vehicle is proposed. The goal of this control is keeping zero velocity of the upper robot (cabin) although the lower robot (ship) is moving by the waves. Jacobian matrix was used to design the controller, From the simulation results, the remarkable reduction of motion of the cabin (upper platform) was observed. The 3SPR parallel robot shows better performance compared to the 3RPS robot.

A Study on the Minimum Weight Design for Flexible Structure (유연구조물의 최소중량설계에 관한 연구)

  • 박중현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken.

Active Flutter Control of an Aircraft Wing Using Controller Order Reduction (제어기축차기법을 이용한 항공기 날개의 플러터제어)

  • 고영무;황재혁;김종선;백승호
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.525-536
    • /
    • 1995
  • In this study, an ROC(Reduced Order Controller) is designed to increase the flutter velocity of an aircraft wing, and the effect of ROC on the flight performance is also analyzed. The aircraft wing used in the paper is modelled as a 3 DOF two-dimensional rigid body. In the disign of controller, LQG and BACR(Balanced Augmented Controller Reduction) strategy is used as control algorithm and controller reduction method respectively. Simulation has been conducted to evaluate the effectiveness of ROC on the active flutter control, compared to FOC(Full Order Controller). It has been found that ROC using BACR is much effective than FOC in the sense of computation effort, without sacrificing the active flutter control performance.

  • PDF

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF