• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.038 seconds

A Study of Robust Vibration Control System for Multi-layer Structure with Modeling Errors

  • Kim, Young-Wan;Lee, Ki-Dong;Yang, Joo-Ho;Kim, Chang-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.6-121
    • /
    • 2001
  • This paper introduce basic study how to restrain the vibration of multi-layer structure. We have modeled mathematically for four-layer-structure and have gotten a reduced nominal model through model analyzing method. And the H$\infty$ control theory was used in this control system to get robust controller. Its shown that the desirable performance is confirmed through the mathematical simulation and the experiments. That is the robustness of this control system which use H$\infty$ control theory is confirmed for ability of disturbance rejection and modeling error.

  • PDF

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.627-632
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological (MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

  • PDF

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Position Control of AS/RS Stacker Crane By Using Cain-Scheduled Control Method in Automated High Rack Warehouse System

  • Kim, Hwan-Seong;You, Sam-Sang;Shigeyasu Kawaji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.198-201
    • /
    • 1999
  • An automated storage and retrieval machinery for high rack warehouse systems is developed in order to stack the various kinds of productions. However, according to increase in the rack height, the long lead time should be taken. In stacker crane systems, the variations of the lifting height and the load generate the vibration of lifting machine, and it makes a Position control to be difficult Therefore, the reduction of vibration will be important factor for saving the lead time and the damage of Productions. This paper deals with a position control of stacker crane in automated high rack warehouse system by using a gain-scheduled control algorithm via a LMI method, where the variations of elastic coefficient of the stacker crane's post are considered.

  • PDF

A Study of 'Mode Selecting Stochastic Controller' for a Dynamic System Under Random Vibration

  • Kim Yong-Kwan;Lee Jong-Bok;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1846-1855
    • /
    • 2005
  • This paper presents a new stochastic controller applied on the vibration control system under irregular disturbances based on the mode selection scheme. Measured displacement and frequency characteristics are simultaneously used in designing a mode selecting controller. This technique is validated by applying to the suppression problem of a flexible beam with randomly vibrated circumstances. The presented method, called Mode Selecting Stochastic Controller, uses the frequency measurement of the flexible system based on a Fast-Fourier transformation algorithm. This controller is constructed by combining mode selection method with previous known Stochastic Controller in real time: Numerical simulations and several experiments are conducted to validate the proposed method. The performance of the proposed method is compared with a stochastic controller developed recently. This method was improved compared with previous one.

Learning Control of a U-type Tuned Liquid Damper (U 자형 TLD 시스템의 학습제어 기법 개발)

  • Ryu, Yeong-Soon;Ga, Chun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1584-1589
    • /
    • 2003
  • Simple and effectively developed learning control logic is used to control vibration of U type Tuned Liquid Damper system. The purpose of this paper is design optimal control system to deal with unknown errors from nonlinearity and variation that cost modeling difficulty in complex structure and is followed with the desired behavior. Finally this hybrid control method applied to U type Tuned Liquid Damper structure gives the benefit from better performance of precision and stability of the structure by reducing vibration effect. This research leads to safety design in various structure to robust unspecified foreign disturbances such as earthquake.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

Dual Servo Control for Aperture Type Near Field Storage Head (개구형 근접장 헤드장치의 간극제어를 위한 이중 서보 제어)

  • Lee, Sung-Q;Kim, Eun-Kyoung;Park, Kang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.479-484
    • /
    • 2006
  • This paper presents an active control of the aperture type near-field storage head. In order to achieve a fast and accurate control, a dual servo control algorithm is applied. Based on the big difference in time constants of two actuators, they are used independently. With the combination fine and coarse actuator, the disk is rotated up to 10 rpm speed until the gap is controlled within 100 nm. From the experimental results, the feasibility and the performance of active dual servo gap control is proved.

Active Control of Transmitted Noise through Opening of Enclosures (인클러져 개구부 투과소음 능동제어)

  • Lee, Hanwool;Hong, Chinsuk;Jung, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.733-738
    • /
    • 2012
  • This paper presents active noise control for the reduction of transmission noise passing through opening of enclosures. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, we modeled and analyzed the noise characteristics passing through the openings of the enclosure generated by the operation of the machinery based on the finite element method. We then implemented a feedforward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. A good control performances were achieved using a minimum number of microphones arranged a optimal placement.

  • PDF

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.