• Title/Summary/Keyword: control network protocol

Search Result 1,451, Processing Time 0.03 seconds

Multi-Channel TDM Protocol based on Traffic Locality (트래픽 편중화에 근거한 다중채널 TDM 프로토콜)

  • 백선욱;최양희;김종상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.306-321
    • /
    • 1994
  • Since TDM protocol can be easily implemented and show high throughput at heavy load, the researches on the multi-channel high-speed network based on TDM access control have been getting more attention than ever. TDM type multi-channel network, however, has disadvantages of excessive delay at light load and inadaptibility to traffic skewing. In this paper, we proposed a new multi-channel TDM structure, time slots are allocated proportional to the traffic flow pattern among the nodes. thus delay and throughput performance are improved. Design principles of TDM frame are discussed considering traffic locality and the number of available channels. Approximate analytic models for delay evaluation are developed and verified by simulations.

  • PDF

TCP-RLDM : Receiver-oriented Congestion Control by Differentiation for Congestion and Wireless Losses (TCP-RLDM: Congestion losses과 Wireless losses 구별을 통한 수신측 기반 혼잡제어 방안)

  • 노경택;이기영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.127-132
    • /
    • 2002
  • This paper aims to adjust the window size according to the network condition that the sender determines by making the receiver participating in the congestion levels. TCP-RLDM has the measurement-based transmission strategy based on the data-receiving rate complementing TCP with the property of Additive Increase / Multiplicative Decrease. The protocol can make an performance improvement by responding differently according to the property of errors-whether congestion losses or transient transmission errors - to confront dynamically in heterogeneous environments with wired or wireless networks and delay-sensitive or -tolerant applications. By collecting data-receiving rate and the cause of errors from the receiver and by enabling sender to use the congestion avoidance strategy before occuring congestion possibly, the protocol works well at variable network environments.

  • PDF

A Scalable Explicit Multicast Protocol for MANETs

  • Gossain Hrishikesh;Anand Kumar;Cordeiro Carlos;Agrawal Dharma P.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.294-306
    • /
    • 2005
  • Group oriented multicast applications are becoming increasingly popular in mobile ad hoc networks (MANETs). Due to dynamic topology of MANETs, stateless multicast protocols are finding increased acceptance since they do not require maintenance of state information at intermediate nodes. Recently, several multicast schemes have been proposed which scale better' with the number of multicast sessions than traditional multicast strategies. These schemes are also known as explicit multicast (Xcast; explicit list of destinations in the packet header) or small group multicast (SGM). In this paper, we propose a new scheme for small group' multicast in MANETs named extended explicit multicast (E2M), which is implemented on top of Xcast and introduces mechanisms to make it scalable with number of group members for a given multicast session. Unlike other schemes, E2M does not make any assumptions related to network topology or node location. It is based on the novel concept of dynamic selection of Xcast forwarders (XFs) between a source and its potential destinations. The XF selection is based on group membership and the processing overhead involved in supporting the Xcast protocol at a given node. If the number of members in a given session is small, E2M behaves just like the basic Xcast scheme with no intermediate XFs. As group membership increases, nodes may dynamically decide to become an XF. This scheme, which can work with few E2M aware nodes in the network, provides transparency of stateless multicast, reduces header processing overhead, minimizes Xcast control traffic, and makes Xcast scalable with the number of group members.

Technical Trend of Time Synchronization Equipment in Naro Space Center (나로우주센터 표준시각 동기화장비 기술동향)

  • Han, Yoo-Soo;Choi, Yong-Tae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.116-123
    • /
    • 2008
  • In the launch mission, mission control systems and tracking systems need time synchronization for data monitoring and data analysis. There are several standards for time synchronization and an adequate standard is selected according to the requirement of time accuracy and cost among time synchronization standards. Oscillators are used to maintain time accuracy. There are some kinds of oscillators with diverse characteristics and an adequate oscillator can be adopted according to time accuracy. In this paper, we will specify characteristics of several oscillators and standards generally used for time synchronization. And we will also introduce TSDN(time synchronization and display network) for time synchronization in Naro Space Center.

  • PDF

Performance Analysis of MAC Protocols for Ethernet PON (이더넷 PON을 위한 MAC 프로토콜 성능 분석)

  • 안계현;이봉주;한경은;강동국;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.457-465
    • /
    • 2003
  • In this paper, we analyze the performances of variable MAC (Medium Access Control) protocols and present an efficient MAC protocol for Ethernet PON (Passive Optical Network). We consider three MAC protocols: static TDMA, dynamic TDMA, and Interleaved polling. Static TDMA assigns an equal amount of bandwidth to all ONUs regardless of the request information but Dynamic TDMA dynamically allocates the bandwidth to each ONU considering its request. Interleaved Polling operates a cycle with variable time period and a polling method for informing a uplink transmission chance to each ONU. This paper theoretically analyzes the available bandwidth for each of three protocols. We also implement the simulation models for them by using OPNET and evaluates the performances under various bursty traffic environments. The results are compared and analyzed in terms of channel utilization and queueing delay.

Dynamic TDMA Protocol for Transmission of Tactical Information in Wireless Network (무선통신망에서 전술정보 전송을 위한 동적 시분할 다중접속프로토콜)

  • Park, Chang-Un;Kim, Tae-Kon;Lim, Man-Yeob;Lee, Youn-Jeong;Kim, Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1640-1650
    • /
    • 2010
  • To prepare for the network centric warfare, Korea Joint Tactical Data Link System(KJTDLS) has been developed by the South Korean military recently and its development is divided into two phases: basic and complete ones. Due to the limited bandwidth and low transmission efficiency of the developing KJTDLS (basic), lots of problems could be occurred when the TDMA protocol in Link-16 is applied. In this paper, a new dynamic TDMA frame structure for KJTDLS(basic) is proposed and the performance of the proposed is evaluated through the implementation of simulation.

Performance Comparison of OLSR and AODV Routing Protocols Using OPNET (OPNET을 이용한 OLSR과 AODV 라우팅 프로토콜 성능 비교)

  • Wang, Ye;Zhang, Xiao-Lei;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2009
  • A Mobile Ad hoc network(MANET) is a network consisting of a set of wireless mobile nodes, which communicate with each other without centralized control or established infrastructure. In this paper, to obtain a better understanding of AODV(Ad hoc On-Demand Distance Vector Routing Protocol)and OLSR(Optimized Link State Routing Protocol) routing protocols, different performances are simulated and analyzed using OPNET modeler 14.5 with the various performance metrics, such as packet delivery ratio, end-to-end delay and routing overhead. As a conclusion, in static analysis, the routing overhead of OLSR is affected by the number of nodes, but not data traffic. In AODV case, it is affected by both data traffic and number of nodes. In mobility analysis, routing overhead is not greatly affected by mobility speed in AODV and OLSR, and the PDR(Packet Delivery Ration) of OLSR is decreased as the node speed increased, while AODV is not changed. AS to delay, AODV is always higher than OLSR in both static and nobility cases.

  • PDF

Evaluation of the Use of Guard Nodes for Securing the Routing in VANETs

  • Martinez, Juan A.;Vigueras, Daniel;Ros, Francisco J.;Ruiz, Pedro M.
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.122-131
    • /
    • 2013
  • We address the problem of effective vehicular routing in hostile scenarios where malicious nodes intend to jeopardize the delivery of messages. Compromised vehicles can severely affect the performance of the network by a number of attacks, such as selectively dropping messages, manipulating them on the fly, and the likes. One of the best performing solutions that has been used in static wireless sensor networks to deal with these attacks is based on the concept of watchdog nodes (also known as guard nodes) that collaborate to continue the forwarding of data packets in case a malicious behavior in a neighbor node is detected. In this work, we consider the beacon-less routing algorithm for vehicular environments routing protocol, which has been previously shown to perform very well in vehicular networks, and analyze whether a similar solution would be feasible for vehicular environments. Our simulation results in an urban scenario show that watchdog nodes are able to avoid up to a 50% of packet drops across different network densities and for different number of attackers, without introducing a significant increase in terms of control overhead. However, the overall performance of the routing protocol is still far from optimal. Thus, in the case of vehicular networks, watchdog nodes alone are not able to completely alleviate these security threats.

Distance-based Routing Mechanism in Mobile Sensor Networks (모바일 센서 네트워크에서 거리 기반 경로배정 메커니즘)

  • Kim, Jun Hyoung;Park, Jung Hyeon;Lee, Sung Keun;Koh, Jin Gwang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 2016
  • Mobility of the sensor networks proposed a new way to the efficient design of sensor networks and improvement of network system performance. Mobility results in a number of functional changes in the MAC protocol and routing protocol. Especially, the mobility of the nodes may occur the increase of the overhead of transmission or disconnection of the link. Therefore, the study of the energy efficient transmission is very important in mobile sensor networks. This paper proposed adaptive transmission mechanism on the distance-based power control. The proposed mechanism was analyzed better than conventional method in the average energy consumption and network life by simulation results.

An E2E Mobility Management and TCP Flow Control Scheme in Vertical Handover Environments (버티컬 핸드오버 환경에서 종단간 이동성 관리 및 TCP 흐름 제어기법)

  • Seo Ki-nam;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.387-395
    • /
    • 2005
  • In this paper, we propose an end-to-end mobility management and TCP flow control scheme which considers different link characteristics for vertical handover environments. The end-to-end mobility management is performed by using SIP protocol. When a mobile node moves to a new network, it informs its movement of the correspondent node by sending SIP INFO message containing a new IP address which will be used in the new network. And then the corresponding node encapsulates all packets with the new IP address and sends them to the mobile node. in general, RTT of WLAN is shorter than RTT of cdma2000. when the MN moves from WLAN network to cdma2000 network, TCP retransmission timeout will be occurred in spite of non congestion situations. Thus, TCP congestion window size will be decreased and TCP throughput will be also decreased. To prevent this phenomenon, we propose a method using probe packets after handover to estimate a link delay of the new network. We also propose a method using bandwidth ratio of each network to update RTT. It is shown through NS-2 simulations that the proposed schemes can have better performance than the previous works.