• Title/Summary/Keyword: control leakage

Search Result 943, Processing Time 0.033 seconds

Development of Performance Verification Method for Components of IoT-based Industrial Valve Safety Management System (IoT 기반 산업용 밸브 안전관리 시스템 구성장치의 성능검증 방안 개발)

  • Kim, Jae-Ok;Lyu, Geun-Jun;Lee, Kyung-Sik;Kim, Jung-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.10-19
    • /
    • 2020
  • Valve leak accidents in petrochemistry plants and gas utilities cause human and property damage. The main reason why happen gas inhalation, poisoning, fire and explosion accidents is gas valve leakage. To prevent gas leakage, inspectors check the facilities in the field. And they are at risk of gas leak accidents. So we applied IoT-based risk assessment, monitoring and automatic control system. It can detect both internal and external gas leakage, do real-time monitoring of industrial valve in the plant by using hybrid sensor. As the new safety management system for industrial valve is developed, it needs method to evaluate device performance and environmental components for the system. This study is about development of method to verify performance of the explosion-proofed hybrid sensing system include gas detector and optical fiber sensor supporting wire and wireless communication.

A Study on the Simulation of Damage Distance for Toxic Substances Leakage (사고대비물질 누출 시 독성피해 영향범위 상관관계식 개발에 관한 연구)

  • Jo, Ga-Young;Lee, Ik-Mo;Hwang, Yong-Woo;Moon, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.599-607
    • /
    • 2017
  • Since 2015, small and medium domestic enterprises that treat more than a certain quantity of chemical substances in accordance with the Chemical Substance Control Act are obliged to submit an off-site impact assessment and risk management plan. In order to reduce the administrative and economic burden of the risk assessment, its impact was determined. Toxic leaks of nitric acid, methanol, and acetic acid were estimated and the correlations (between them?) were calculated. In addition, the correlations of this study were used to compare the KORA results according to the accident scenarios of the actual workplace and the extent of the damage as a function of distance in the case of toxic leaks. In this study, the correlation formula of the materials can be used to quickly determine the damage distance in the event of the accidental leakage of materials in the road or workplace, and to prepare emergency plans and respond to emergencies more quickly.

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.

FEA(Finite Element Analysis) Study for Electronic Hydrogen Regulator of Confidentiality Improvement (전자식 수소레귤레이터 기밀성 향상을 위한 FEA 연구)

  • Son, Won-Sik;Song, Jae-Wook;Jeon, Wan-Jae;Kim, Seung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.175-181
    • /
    • 2019
  • In the case of a conventional single stage decompression regulator used for large depressurization in the hydrogen fuel cell system of a fuel cell electric vehicle (FCEV), problems can arise, such as pulsation, slow response, hydrogen brittleness, leakage, high weight, and high cost due to high decompression. Most of these problems can be overcome easily using two decompression mechanisms (two-stage structures). In addition, a wide outlet-pressure control range can be secured if an electronic solenoid is applied to the second decompression. Accordingly, it is necessary to improve the precision of the outlet pressure of a two-stage pressure-reducing regulator and develop techniques, such as leakage prevention, durability, light weight, and price reduction. Therefore, to improve the outlet pressure accuracy and prevent leakage, the structural part before and after decompression to improve the air tightness were divided and the analysis was carried out assuming that the valve part was closed (open ratio: 0%) after each initial internal pressure application.

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Successful Tractotomy Technique for a Penetrating Lung Injury in a Patient with One Lung

  • Kang, Dong Hoon;Park, Hyun Oh;Moon, Sung Ho;Jang, In Seok;Byun, Jung Hoon;Kim, Sung Hwan
    • Journal of Chest Surgery
    • /
    • v.50 no.5
    • /
    • pp.399-402
    • /
    • 2017
  • We report the case of a patient with penetrating chest trauma (right chest) who had undergone a left pneumonectomy due to pulmonary tuberculosis 24 years ago. We performed an emergent thoracotomy, finding an opening of the penetrating wound in a lower-lobe basal segment of the right lung. A stapled tractotomy was performed along the tract. Bleeding control and air-leakage control was done easily and rapidly. The patient was discharged without any complications on the seventh day of admission. Tractotomy can be a good option for treating penetrating lung injuries in patients with limited lung function who need emergent surgery.

A Numerical Study of the Air Quality Inside Automobiles According to the HVAC System Operating Conditions (HVAC 작동특성에 따른 자동차 실내 공기질 평가에 관한 수치해석적 연구)

  • Yoon, Seonghyun;Seo, Jinwon;Choi, Yunho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-309
    • /
    • 2014
  • When using an automotive heating, ventilation, and air conditioning (HVAC) system, we can obtain fresh outside air while maintaining the interior vehicle temperature. In this study, a correction equation considering experimental data for automotive indoor air leakage is defined to simulate the ratio of fresh air to recirculated air in the automobile cabin. With this correction equation, numerical results are compared with experimental data and validated. The $CO_2$ concentration in the automotive cabin is evaluated by considering various boarding conditions and mass flow rates of the HVAC system. The $CO_2$ concentration model derived in this study is expected to be used to control the effective air conditioning and become a basic research tool for automotive air quality control system development.

Basic Study for Distillation of Rocket Grade Hydrogen Peroxide (추진제 급 과산화수소 증류를 위한 기초 연구)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.67-70
    • /
    • 2009
  • Because many research using rocket grade peroxide is studied, distillation method for domestic production of rocket grade hydrogen peroxide is required. Distillation methods are very various and divided by feeding method, distillation time, distillation pressure, and so on. Among these, vacuum distillation is a suitable method for hydrogen peroxide. This method can reduce thermal decomposition and reaction with impurities. Distillation condition is determined by Raoult's law. Low vacuum level and vacuum level control are appeared as important problems of the experiment equipment, which are solved by using less leakage vacuum chamber and metering valve.

  • PDF

Network Group Access Control system using piggy-backing prevention technique based on Infrared-Ray (적외선 기반 피기백킹 방지 기법을 적용한 네트워크 그룹 접근통제 시스템)

  • Kim, JongMin;Choi, KyongHo;Lee, DongHwi
    • Convergence Security Journal
    • /
    • v.12 no.4
    • /
    • pp.109-114
    • /
    • 2012
  • Information society in recent times, lots of important information have been stored in information systems. In this situation, unauthorized person can obtains important information by piggy-backing and shoulder surfing in specific area of organization. Therefore, in this study, we proposed network group access control system by combining RFID and infrared-ray for blocking information leakage due to unauthorized access by internal threats and enhancing personnel security. So it can provides a more secure internal network environment.