• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.029 seconds

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

A Stop-and-Go Cruise Control Strategy with Guaranteed String Stability (String Stability를 보장하는 정지/서행 순항제어 시스템)

  • 박요한;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.227-233
    • /
    • 2002
  • A vehicle longitudinal control strategy with guaranteed string stability for vehicle stop-and-go(SG) cruise control is presented in this paper. The SG cruise control systems should be designed such that string stability can be guaranteed in addition to that every vehicle in a string of SG cruise control vehicles must track any bounded acceleration and velocity profile of its preceding vehicle with a bounded spacing and velocity error. An optimal vehicle following control law based on the information of the 1311owing distance (clearance) and its velocity relative to the vehicle ahead (relative velocity) has been used and string stability analysis has been done based on the control law and constant time gap spacing policy, A validated multi-vehicle simulation package has been shown that the string stability analysis using the approximate model of the vehicle servo-loop which includes vehicle powertrain and brake control system dynamics is valid in the design of the SG cruise control law with guaranteed string stability.

A Study on Design and Validation of Pilot Activated Recovery System to Recover Aircraft Abnormal Attitude, Altitude and Speed (항공기 비정상 자세, 고도 및 속도 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1302-1312
    • /
    • 2008
  • Relaxed Static Stability(RSS) has been applied to improve flight performance of modern version supersonic jet fighters. Flight control systems are necessary to stabilize an unstable aircraft and to provide adequate handling qualities. Also, flight control systems of modern aircraft employ many safety measure to cope with emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes, speed and altitude. This paper addresses the concept of PARS with AARS(Automatic Attitude Recovery System), ATCS(Automatic Thrust Control System) and MARES(Minimum Altitude Recovery Estimation System), and this control law is designed by nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by real-time pilot evaluation using an HQS(Handling Quality Simulator). The result of evaluation reveals that the these systems support recovery of an aircraft unusual attitude and speed, and improve a safety of an aircraft.

A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery (항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

Nonlinear Control Law for Spacecraft Slew Maneuver using Backstepping Control Law (Backstepping 제어기법을 이간한 위성체 선회기동의 비선형 제어기법)

  • 김기석;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.4-4
    • /
    • 2000
  • In this paper, the backstepping control method that is useful for cascade systems is applied to the slew maneuver of the spacecraft. The quaternion is used for representing the attitude of the spacecraft, because the reference trajectory of angular velocity has simple mathematical form. The conventional backstepping control has severa] problems such as slow convergence, trivial cancelling of nonlinear terms, and excessive control input. To overcome these problems, the modified backstepping control method which is redesign of Lyapunov function is proposed. To design a tracking function for angular velocity, it is necessary to estimate the process of maximum angular velocity, and therefore the estimation procedure using Bellman-Gronwall inequality is developed. To verify the effectiveness of the proposed control law, numerical simulation is performed and the results are compared with the exiting control scheme.

  • PDF

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Design of a dynamic output feedback law for replacing the output derivatives

  • Son, Young-I.;Shim, Hyung-Bo;Jo, Nam-H.;Kim, Kab-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.337-341
    • /
    • 2003
  • This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we first assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation studies of a numerical example with an observer-based control law.

  • PDF

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Stability of Sampled-Data Control Systems with Computer Interruptions (투명 PLZT 세라믹의 전기적 및 광 메모리 특성)

  • Jang, Seong-Whan
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-483
    • /
    • 1987
  • This paper analyzes centralized sampled-data control systems with feedback loops which are closed through a digital computer which generates deadbeat control law. Intermittant computer interruptions result in failure to update the desired deadbeat design procedures for the deadbeat control law under normal operation of the control computer and the assumption of any admissible computer interruption are resented. A method that guarantees asymptotic stability under all admissible computer interruptions also is presented.

  • PDF

Robust Control Design for Robots with Flexible Joint and Link

  • Jung, Eui-Jin;Ha, In-Chul;Kim, Chang-Gyul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.113.5-113
    • /
    • 2001
  • In this work, we consider the flexible manipulator system. Generally, the manipulator system may often be made on the base of the imperfect modeling, joint friction, payload change, and external disturbances. These elements are uncertain factors. These uncertainties and flexibility make difficult to control the system. To overcome these defects, a class of robust control law is proposed for the flexible manipulator system and the singular perturbation approach is applied. To show the effectiveness of this control law, simulation is presented for one degree of freedom flexible joint and flexible link system.

  • PDF