• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.03 seconds

Model reference adaptive controller design for missiles with nonminimum-phase characteristics (비최소 위상 특성을 갖는 유도탄의 기준 모델 적응 제어기 설계)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.624-629
    • /
    • 1993
  • In this paper, a model reference adaptive control scheme is applied to the normal acceleration controller for missiles with nonminimum-phase characteristics. The proposed scheme has an auxiliary compensator, an identifier of plant parameters and a feedback control law. First, plant parameters are estimated by the identifier and based the parameter estimates the coefficients of the compensator are calculated so that the estimated plant model with the compensator becomes minimum-phase. In this calculation, Nehari Algorithm is used. Parameters of the control law are then updated so that the extended plant model follows the given reference model. It is shown that the performance of the designed controller is satisfied via computer simulations.

  • PDF

Constrained Adaptive Backstepping Controller Design for Aircraft Landing in Wind Disturbance and Actuator Stuck

  • Yoon, Seung-Ho;Kim, You-Dan;Park, Sang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.74-89
    • /
    • 2012
  • An adaptive backstepping controller is designed for the automatic landing of a fixed-wing aircraft. The backstepping control scheme is adopted by using the nonlinear six degree-of-freedom dynamics of the aircraft during the landing phase. The adaptive law is integrated along with the backstepping controller in order to estimate the aircraft modeling errors as well as the external disturbance. The dynamic constraints of the states and the actuator inputs are taken into account in the parameter adaptation. This is done to prevent an aggressive adaptation and to provide reliable control commands. Numerical simulations were performed to verify the performance of the proposed control law for the landing of the aircraft with the presence of gust and actuator stuck.

Considerations in Practical Advanced Guidance Law Development (실용적 첨단유도법칙 개발을 위한 고려사항)

  • 조항주
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.96-106
    • /
    • 2002
  • Many modern guided weapon systems employ sophisticated target sensors as well as powerful computing systems. Due to such advanced features, they are required to achieve better guidance accuracy, and at the same time other guidance objectives for better weapon effectiveness and survivability. In this paper, we overview some of the technical considerations in such advanced guidance algorithm development, and briefly look at some related research works. More specifically, we discuss impact angle control, time-varying nature of the guidance system, time-to-go estimation, guidance loop stability, effect of autopilot lag and physical limitations in control variables, parasitic paths in guidance loops, etc. We also briefly look at some advanced concepts such as integrated guidance and control loop design, target adaptive guidance, guidance law development based on dual control concept, and terminal evasive maneuver.

A Survey on Eigenstructure Assignment (고유구조 지정기법 : 연구동향과 전망)

  • Park, Jae-Weon;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.854-870
    • /
    • 2000
  • This survey paper presents and overview on eigenstructure assignment (EA) control design methodologies. EA is an excellent control design method which may be used to assign the entire eigenstructure(eigenvalues, and right or left eigenvectors) of a closed-loop linear system via a full state or an output feedback control law. In general, EA is well-sutied for incorporating classical specifications on damping, settling time, and mode or disturbance decoupling into a modern multivariable control framework. The purpose of this paper is to provide an extensive survey on EA control design methods that might serve as an introduction to a study on EA. The fundamental concepts and formulations for understanding EA problems are extensively described. The recently reported results on EA are also presented.

  • PDF

Shape optimization of polymer extrusion die using three-dimensional flow simulation and non-Newtonian fluid models (3차원 흐름 모사와 비뉴톤 유체모델을 이용한 고분자 압출 다이의 형상 최적화)

  • 나수연;이태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1754-1757
    • /
    • 1997
  • Three-dimensional optimum design of coat-hanger die is performed using power-law and Carreau models. It is found that the three-dimensional optimum design algorithm shows good convergence with the non-Newtonian fludis. the nore realistic optimum design is accomplished by employing Carreau model with the three-dimensional design method. The effect of vixcosity modles is investigated by comparing the optimum manifold profiles and flow rate distributions of power-law and Carreau modles. Through the accurated viscosity representation of Carreau model, the effect of total flow rate on the optimum manifold profile is investigated.

  • PDF

Adaptive stabilization for nonlinear systems with multiple unknown virtual control coefficients (다수의 미지 가상 입력 계수들을 가지는 비선형 시스템에 대한 적응 안정화)

  • Seo, Sang-Bo;Jung, Jin-Woo;Seo, Jin-Heon;Shim, Hyung-Bo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.76-78
    • /
    • 2009
  • This paper considers the problem of global adaptive regulation for a class of nonlinear systems which have multiple unknown virtual control coefficient. By using a new parameter estimator and backstepping technique, we design a smooth state feedback control law, parameter update laws that estimate the unknown virtual control coefficients, and a continuously differentiable Lyapunov function which is positive definite and proper.

  • PDF

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

New State Feedback Control for Series Resonant Converter (직렬공진형 컨버터의 새로운 상태궤환 제어)

  • 조일권;김만고;이대식;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.828-835
    • /
    • 1990
  • A new state feedback control scheme is proposed to improve the stability and dynamic performances of the series resonant converter (SRC). The proposed scheme can be easily implemented without speed limitation. Design parameter of the proposed control is the ratio of the state feedback gains. A closed loop dynamic modeling for the SRC with the proposed control law is derived. Parametric curves which can be used to select the design parameter in the control system are presented. The experimental results show that the excellent dynamic performance of the converter can be obtained by properly selecting the design parameter. The results are further compared with both the theoretical analysis and the frequency control.

  • PDF

LMI-based Design of Integral Sliding Mode Controllers for Time-Delay Systems (시간 지연 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2480-2483
    • /
    • 2009
  • This paper presents an LMI-based method to design a integral sliding mode controller for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding surface guaranteeing the asymptotic stability of the sliding mode dynamics. And we give a switching feedback control law. Our method is a generalization of the previous integral sliding mode control design methods. Since our method is based on LMIs, it gives design flexibility for combining various useful design criteria that can be captured in the LMI-based formulation. We also give LMI existence conditions of sliding surfaces guaranteeing a-stability or LQ performance constraint. Finally, we give a numerical design example to show the effectiveness of the proposed method.

Robust Predictive Control of Robot Manipulators with Uncertainties (불확실 로봇 매니퓰레이터의 견실 예측 제어기 설계)

  • 김정관;한명철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2004
  • We present a predictive control algorithm combined with the robust robot control that is constructed on the Lyapunov min-max approach. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about the model, it is an important trend to design a robust control law that guarantees the desired properties of the manipulator under uncertain elements. In the preceding robust control work, we need to tune several control parameters in the admissible set where the desired stability can be achieved. By introducing an optimal predictive control technique in robust control we can find out much more deterministic controller for both the stability and the performance of manipulators. A new class of robust control combined with an optimal predictive control is constructed. We apply it to a simple type of 2-link robot manipulator and show that a desired performance can be achieved through the computer simulation.