• Title/Summary/Keyword: control arm

Search Result 1,243, Processing Time 0.032 seconds

The Relationship of Pelvic Pressure and Irradiation of the PNF Upper Arm Pattern in the Sitting Position with an Elastic Band -A Randomized Control Trial- (앉은 자세에서 탄력밴드를 이용한 PNF 팔 패턴의 방산효과가 골반의 압력에 미치는 영향)

  • Yang, Jae-Man;Yeo, Go-Eun;Kim, Dong-Wook;Lee, Jung-Hoon
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.421-429
    • /
    • 2019
  • Purpose: This study evaluated the relationship between pelvic pressure and irradiation of the proprioceptive neuromuscular facilitation (PNF) upper arm pattern exercises with an elastic band while in a sitting position. Methods: Fourteen subjects with asymptomatic pelvic pressure participated in this study. Pelvic pressure was measured using a Gaitview® system while sitting and performing PNF bilateral upper arm patterns. Resistance strength was provided by the blue elastic band. The statistical significance of the results was evaluated using a repeated one-way ANOVA and the independent t-test. The Bonferroni method was used for the post-hoc test. Results: The results revealed a significant change in the pelvic pressure when performing the PNF arm pattern. The average resistance pressure on the pelvis, with the elastic band, significantly increased after the initial sitting position (F=3.91, 3.92; p<0.05). No significant pelvic pressure changes were noted for each PNF upper arm pattern (p>0.05). Conclusion: The results of this study showed a positive relationship between pelvic pressure and the irradiation of PNF upper arm pattern exercises with resistance in the sitting position.

A study on dual-arm SCARA robot system for collision avoidance (두 대의 스카라로봇으로 구성된 시스템의 충돌회피에 대한 연구)

  • 홍용준;양승원;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.908-911
    • /
    • 1996
  • 본 논문은 작업공간을 공유하는 두 대의 스카라 로봇으로 이루어진 Dual-Arm SCARA 로봇 시스템과 여러 대의 로봇을 제어할수 있는 로봇제어기로 동시에 독립적인 작업을 하는 경우 두 로봇의 동작에 따른 로봇 ARM의 모델링을 실시간으로 처리하여 상대 로봇과의 충돌이 예상되는지를 실시간 검색하여 두 로봇간의 충돌이 발생하지 않도록 하는 충돌검출 방법과, 두 대의 로봇이 충돌가능성으로 인하여 원하는 작업을 수행할수 없는 상태가 되는 경우 작업을 원활하게 이루어지도록 하는 충돌회피를 위한 로봇의 궤적을 생성하여 로봇을 이동시키고 다시 원래의 위치로 돌아 올수 있는 방법을 구현하였다.

  • PDF

Co-rotational Plane Beam-Dynamic Tip Load를 이용한 Drone Single Arm 최적 설계

  • Park, Seon-Hu;Lee, Sang-Gu;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.290-303
    • /
    • 2017
  • This paper aims to build a drone platform based on an optimum design of its single arm. We assumed its single arm as a cantilevered beam with a tip mass. Based on the numerical optimization theory, we conducted validation and optimization of a new design by comparing the results with the similar ones obtained by ANSYS. Finally, this design is reflected in the control simulation, and the requirement of an optimum structural design considering the resonance situation is demonstrated.

  • PDF

Tele-Operation of Dual Arm Robot Using 3-D vision

  • Shibagami, Genjirou;Itoh, Akihiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.386-390
    • /
    • 1998
  • A master-slave system is proposed as a teaching device for a dual arm robot. The slave robots are remotely controlled by two delta-type master arms. In order to help the operator to observe the target object from the desired position and desired direction, cameras are mounted on a specialized manipulator, Movements of two slave arms are coordinated with that of the cameras. Due to this coordinated movements, the operator needs not to care the geometrical relation between the cameras and the slave robots.

  • PDF

A Low-Cost Vector Control System of Induction Motor Using the ARM Cortex-M4 (ARM Cortex-M4를 이용한 저가형 유도전동기 벡터제어 시스템)

  • Kim, Dong-Ki;Lee, Seung-Yong;Yoon, Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.584-585
    • /
    • 2012
  • 본 논문에서는 DSP 및 FPU(Floating Point Unit) 기능을 갖는 ARM계열의 Cortex-M4 마이크로컨트롤러를 이용하여 저가형 벡터제어 시스템을 구현하였다. 이것은 최대 168MHz의 높은 클록으로 동작하면서도 소비전력이 낮고 가격이 저렴하다.

  • PDF

Design and implementation of a dynamic controller for Hong-Ik Direct Drive Arm (홍익 직접 구동팔의 동적 제어기 개발)

  • 이재완;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1052-1057
    • /
    • 1993
  • A scara type Direct Drive Arm(DDA) with two degrees-of-freedom is designed and implemented. The direct drive motor is used to furnish large torque to reduce the modeling error by the gear and chains. To control the DDA, a multiprocessor control structure with multirate dynamic control algorithm is designed. In the control algorithm, the dynamics of system is used to calculate the nominal control torque and the feedback controls are calculated with a parallel processing algorithm for each joint. The laboratory experiments on Hong-Ik DDA by dynamic control algorithm are presented and compared to that of PID control algorithm. This result shows that the proposed controller guarantees small trajectory error and stability. With this research, Hong-Ik DDA is expected to be utilized as A basic tool for robotics and control engineering.

  • PDF

Sliding mode control of a single-link flexible arm with uncertainties (불확실성을 갖는 단일 링크 탄성 Arm의 슬라이딩 모드 제어)

  • 신호철;김정식;최승복;정재천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.546-551
    • /
    • 1993
  • A new robust sliding mode controller is formulated for the tip position control of a single-link flexible manipulator with parameter variations. After establishing the plant model characterized by a noncollocated uncertain control system, a sliding surface which guarantees stable sliding mode motion is synthesized in an optimal manner. The surface is then modified to adapt arbitrarily given initial conditions. A discontinuous control law associated with the modified surface is designed by restricting that velocity state variables are not available from direct sensor measurements. Using the proposed control law favorable system responses are accomplished through shortening the reaching phase of state trajectory without increasing maximum control torque as well as undesirable chattering. Furthermore, a low sensitiveness to uncertainties is obtained from inherent salient properties of the proposed control system. Computer simulations are undertaken in order to demonstrate these superior control performance characteristics to be accrued from the proposed methodology.

  • PDF

Two-Degrees-Of-Freedom Internal Model Position Control for Slave Manipulator Teleoperated by Master Arm

  • Park, Byung-Suk;Kim, Dong-Gi;Jin, Jae-Hyun;Ahn, Sung-Ho;Song, Tae-Gil;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.5-108
    • /
    • 2002
  • Recently, the more advanced control technologies are required to deal with the fast and accurate motion in manipulators. For these requirements, many manipulator control methods have been developed such as a computed torque method. This paper proposes a design method, a two-degrees-of-freedom internal model control (TDOF IMC), of the manipulator position control based on combination of the one-degree-of-freedom internal model control (ODOF IMC) system and the disturbance observer. The proposed control scheme is implemented for the position control, which leads the slave manipulator to the desired location by the master arm. The experimental results are presented and discussed through the imp...

  • PDF

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

The Effect of Arm Training in Standing Position on Balance and Walking Ability in Patients with Chronic Stroke (선 자세에서 상지 훈련이 만성 뇌졸중 환자의 균형과 보행 능력에 미치는 영향)

  • Bang, Dae-Hyouk;Cho, Hyuk-Shin
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • PURPOSE: The purpose of this study was to determine the effects of arm training in standing position on balance and walking ability in chronic stroke patients. METHODS: Sixteen chronic stroke patients were allocated equally and randomly to an experimental group (n=8) or a control group (n=8). All participants received 60 minutes of comprehensive rehabilitation treatment, the experimental group additionally received an arm training in standing position for 30 minutes, while the control group additionally performed a treadmill training for 30 minutes. These 30-minute training sessions were held three times per week for six weeks. Upper extremity function was assessed using Fugle-Meyer motor assessment function upper extremity (FMA-UE), balance was assessed using Berg balance scale (BBS), and walking ability (gait speed, cadence, step length, and double limb support period) was assessed using the GAITRite system. RESULTS: Improvement on all outcome measures was identified from pre-to-post intervention for both groups (p<.05). Post-intervention, there was a significant between-group difference on BBS, gait speed, cadence, step length, and double limp support period (p<.05). The experimental group exhibited greater improvement in the BBS (p=.01; z=-2.48), gait speed (p=.01; z=-3.26), cadence (p=.02; z=-2.31), step length (p=.01; z=-3.36), and double limb support period (p=.03; z=-2.84) compared to the control group. CONCLUSION: The findings of this study suggest that arm training in standing position may be beneficial for improving balance and walking ability of patients with chronic stroke.