• Title/Summary/Keyword: control Lyapunov function

Search Result 374, Processing Time 0.024 seconds

Robust Stability of Uncertain Discrete-Time Linear Systems with Time-Varying Delays (시변 시간 지연을 갖는 불확실한 이산 시간 선형 시스템의 견실 안정성)

  • Song, Seong-Ho;Park, Seop-Hyeong;Lee, Bong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.641-646
    • /
    • 1999
  • This paper deals with the robust stability of discrete-time linear systems with time- varying delays and norm-bounded uncertainties. In this paper, the magnitude of time-varying delays is assumed to be upper-bounded. The sufficient condition is presented in terms of linear matrix inequality. It is also shown that the robust stability of uncertain discrete-time linear systems with time-varying delays is related with the quadratic stability of uncertain discrete-time linear systems with constant time delay.

  • PDF

A partial feedback linearization control of inverted pendulum by using nonlinear additional input (비선형 추가입력을 이용한 도립 진자의 부분 궤환 선형화 제어기 설계)

  • Kim, Yong-Jun;Yoem, Dong-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.58-62
    • /
    • 2002
  • This paper proposes a new nonlinear controller to swing-up an inverted pendulum system mounted on a car. This controller considers not only the pendulum but also the displacement of the cart. A single-input multi-output system is considered to control the inverted pendulum by using partial feedback linearization and nonlinear additional input. The asymptotic stability of the system is shown by using Lyapunov function. The simulation results show effectiveness of the proposed controller.

  • PDF

A Study on the SIIM Fuzzy Quasi-Sliding Mode Control for the Double Inverted Pendulum on a Cart (수레-2축역진자 시스템의 SIIM 퍼지 의사-슬라이딩 모드 제어에 관한 연구)

  • Chai, Chang-Hyun;Kim, Seong-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-121
    • /
    • 2018
  • In this paper, we propose the SIIM fuzzy Quasi-sliding mode controller for the system of a double inverted pendulum on a cart. Since it is difficult to handle this 6th-order system, we decoupled the entire system into three $2^{nd}$ order subsystem, and we designed the SIIM fuzzy Quasi-sliding mode controller for each subsystem, which was easy and did not require the derivation of the equivalent control. The stability of the entire system is guaranteed using Lyapunov function. The validity and robustness of the proposed controller are demonstrated through the computer simulation, and the results are compared with the results of former studies.

On Convergence and Parameter Selection of an Improved Particle Swarm Optimization

  • Chen, Xin;Li, Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.559-570
    • /
    • 2008
  • This paper proposes an improved particle swarm optimization named PSO with Controllable Random Exploration Velocity (PSO-CREV) behaving an additional exploration behavior. Different from other improvements on PSO, the updating principle of PSO-CREV is constructed in terms of stochastic approximation diagram. Hence a stochastic velocity independent on cognitive and social components of PSO can be added to the updating principle, so that particles have strong exploration ability than those of conventional PSO. The conditions and main behaviors of PSO-CREV are described. Two properties in terms of "divergence before convergence" and "controllable exploration behavior" are presented, which promote the performance of PSO-CREV. An experimental method based on a complex test function is proposed by which the proper parameters of PSO-CREV used in practice are figured out, which guarantees the high exploration ability, as well as the convergence rate is concerned. The benchmarks and applications on FCRNN training verify the improvements brought by PSO-CREV.

Observer-based H Fuzzy Controller Design of Interval Type-2 Takagi-Sugeno Fuzzy Systems Under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 관측기 기반 구간 2형 T-S 퍼지 시스템의 H 퍼지 제어기 설계)

  • Hwang, Sounghwan;Park, Jin Bae;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1620-1627
    • /
    • 2017
  • In this paper, we design an observer-based $H_{\infty}$ fuzzy controller for interval type-2 Takagi-Sugeno (T-S) fuzzy systems under imperfect premise matching. The designed observer-based controller can effectively estimate the state of the system and make fuzzy system satisfy the $H_{\infty}$ disturbance attenuation performance. Using the slack matrix, the derived stabilization condition is expressed in terms of a linear matrix inequality. Finally, the effectiveness of the proposed method is verified through a simulation example.

Static Output Feedback Robust $H\infty$ Fuzzy Control of Discrete-Time Nonlinear Systems with Time-Varying Delay (시변 지연 이산 시간 비선형 시스템에 대한 정적 출력 궤환 $H\infty$ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.149-152
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi -Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities.

  • PDF

A Study on Chaos Control of a Chua' Oscillator Circuit Using a Lyapunov function (리아프노프 함수를 이용한 Chua 오실레이터 회로에서의 카오스 제어)

  • 배영철;고재호;유창환;홍대승;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • In this paper, chaotic signals of a Chua's oscillator are effectively controlled to low periodic signal(1-periodic signal, 2-periodic signal, etc) or equilibrium point using the linear state feedback technique. The proposed linear state feedback technique has characteristics, that any solution of the Chua's oscillator can be a goal of the control(fixed point, periodic orbit, etc). The controller has a very simple structure, which does not require adjusting system parameters.

  • PDF

Control of Cyber-Physical Systems Under Cyber-Attacks (사이버공격에 강인한 사이버물리시스템의 제어)

  • Lee, Tae H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.269-275
    • /
    • 2019
  • This paper addresses the control problem of cyber-physical systems under controller attack. A novel discontinuous Lyapunov functionals are employed to fully utilize sampled-data pattern which characteristic is commonly appeared in cyber-physical systems. By considering the limited resource of networks, cyber-attacks on the controller are considered randomly occurring and are described as an attack function which is nonlinear but assumed to be satisfying Lipschitz condition. Novel criteria for designing controller with robustness for cyber-attacks are developed in terms of linear matrix inequality (LMI). Finally, a numerical example is given to prove the usefulness of the proposed method.

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Self-Learning Supervisory Control of a Power Transmission System in a Construction Vehicle during Inertia Phase (건설장비용 동력전달계의 관성영역에서의 자기학습 제어기법)

  • Choi, Gil-Woo;Hahn, Jin-Oh;Hur, Jae-Woong;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.723-729
    • /
    • 2001
  • Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.

  • PDF