• Title/Summary/Keyword: contraction deformation

Search Result 69, Processing Time 0.025 seconds

Relationship between Side-Necking and Plastic Zone Size at Fracture (파괴 시 발생하는 측면함몰과 소성영역크기와의 관계)

  • Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.365-371
    • /
    • 2004
  • Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixities $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed.

  • PDF

Effect of the boundary shape of weld specimen on the stress distribution (용접시편의 테두리 모양이 응력 분포에 미치는 영향)

  • Yang, Seung-Yong;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.348-352
    • /
    • 2004
  • In finite element analysis of mechanical behavior of weld, typical process is first to obtain a finite element model containing residual stress by conducting welding analysis and then to examine the computational specimen for various external loading. The numerical specimen with residual stress has irregular boundary lines since one usually begins the welding analysis from a body having regular straight boundary lines and large thermal contraction takes place during cooling of weld metal. We notice that these numerical weld specimens are different from the real weld specimens as the real specimens are usually cut from a bigger weld part and consequently have straight boundaries neglecting elastic relaxation associated with the cutting. In this paper, an iterative finite element method is described to obtain a weld specimen which is bounded by straight lines. The stress distributions of two types of weld specimen, one with regular and the other with irregular boundaries, are compared to check the effect of the boundary shape. Results show that the stress distribution can be different when large plastic deformation is induced by the application of external loading. In case of elastic small deformation, the difference turns out almost negligible.

  • PDF

The Study of Kogas Membrane Performance Test for LNG Storage Tank (Kogas 멤브레인 성능평가에 관한 연구)

  • Kim Y.K.;Hong S.H.;Yoon I.S.;Oh B.T.;Seo H.S.
    • 한국가스학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.16-22
    • /
    • 2001
  • LNG demand has been rapidly increasing in Korea for a variety of reaso including stable supply, non- polluting, and high combustion efficiency characteris As a result the construction and expansion of LNG storage facilities have b continuing at a vigorous pace. One of the most important structural core elemen the LNG storage tank is the membrane, consisting of stainless steel. The memb to be applied inside of LNG storage tank is provided with corrugations to abs thermal contraction and expansion caused by LNG temperature. From the viewp of strength design, however. it is essential to confirm that the membrane undergo a stable deformation and has a sufficient fatigue strength Experim studies are presented to investigate the deformation and strength of the memb which is designed by Kogas. All experiments are conducted on the basis of RP and we found the results is fully satisfied with the RPIS.

  • PDF

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

Thermal Stress Analysis of Piping Systems in Steam-driven Power Engines (증기 동력기관 내 배관시스템의 열응력 해석)

  • Kim, C.H.;Chung, H.T.;Bae, J.S.;Jung, I.S.;Lee, S.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.35-42
    • /
    • 2009
  • The piping systems in the steam-driven power engines lie under the cyclic condition of thermal expansion and contraction by superheated steam. These phenomena might cause some severe damages on the pipes and the accessory devices. To avoid these damages, the calculation of the proper strength and the consideration of the reduced resultant forces on the materials are needed. In the present study, numerical investigations on the effects of the thermal deformation of the industrial piping system were performed with comparison of the design data. Commercial software, ABAQUS with the thermal-fluidic loadings based on the design conditions was used for the thermal stress analysis of the piping system. From the analysis of the initially-designed pipe supporters, the rearrangement was suggested to improve the piping design.

  • PDF

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane by using Strain Gage (스트레인 게이지를 이용한 Pilot LNG 저장탱크 멤브레인 실 변형 거동 측정)

  • Kim, Young-Kyun;Yoon, Ihn-Soo;Oh, Byoung-Taek;Hong, Seong-Ho;Yang, Young-Myung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.108-113
    • /
    • 2004
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature changes. It is very important to measure their thermal strains under LNG temperatures by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data. On the basis of these results, we could design and assure the application of the Kogas Membrane to large scale LNG storage.

  • PDF

The Measurement of Membrane Deformation Behavior in Kogas Pilot LNG Storage Tank by the use of Mechanical/Electrical Sensor (II) (기계적/전기적 측정 센서를 이용한 Kogas Pilot LNG 저장탱크 멤브레인 변형 거동 측정(II))

  • Kim Y.K.;Hong S.H.;Oh B.T.;Yoon I.S.;Kim J.H.;Kim S.S.
    • 한국가스학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.85-90
    • /
    • 2003
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature. We constructed strain measurement system by using strain gage. In this paper, some problems which should be considered when measuring strain at $-162^{\circ}C$, are discussed by presenting test results on the characteristics of strain gages, Temperature sensor, adhesive and lead wire. And presenting the procedure of the constructing strain measurement system.

  • PDF

A Study on the Effects of the Design Parameters and Sealing Mechanism of the Exhaust Gas in Engine Exhaust System (엔진 배기계의 배기가스 누설 메카니즘과 설계인자들의 영향에 관한 연구)

  • Choi, B.L.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2010
  • This paper deals with the sealing mechanism of the gasket component and the effects of design parameters for the exhaust manifold. The finite element model includes hot-end exhaust system and a simplified gasket model supplied by ABAQUS software. The mechanical behaviors of bead and body of a gasket are measured after several times of cyclic loads by gasket supplier. From the finite element analysis due to the cyclic thermal loads, the flange of exhaust manifold shows thermal expansion and contraction in longitudinal direction as well as convex and concave deformations with respect to the engine cylinder head. And, the contact pressures of the gasket beads suddenly changes by normal deformation of inlet flanges. Therefore, the magnitudes of contact pressures could be used to determine the sealing characteristics of the exhaust gas in the exhaust system. The distributions of contact pressures in gasket bead lines shows a good agreement with the engine test results.

Three Dimensional Simulation of Edge-Plate Rolling Process Using Rigid Plastic Finite Element Method (강소성 유한요소법을 이용한 에지-평압연 공정의 삼차원 해석)

  • 이동재;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.244-248
    • /
    • 1997
  • In the rolling process, keeping the accuracy of the slab width is a very important problem. So the edge rolling is used with the plate rolling. But in the edge rolling, a local contraction of width, called "width necking", occurs in the top and tail portion of a slab and becomes the cause of crop loss. In this investigation, the three dimensional deformation behavior in the edge-plate rolling is simulated by rigid plastic FEM(PROLL). And the influence of the rolling condition on "width necking" and the accuracy of width is examined.

  • PDF

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer (압전식 압력센서에서 발생하는 열충격 효과 정량화)

  • Lee, Seok-Hwan;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.96-103
    • /
    • 2005
  • One of the major problems limiting the accuracy of piezoelectric transducers fur cylinder pressure measurements in an internal combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The result indicate that the thermal shock equation provides reliable correction based on known surface temperature swing.