• 제목/요약/키워드: continuum thermodynamics

검색결과 10건 처리시간 0.026초

Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications

  • Jehel, Pierre;Davenne, Luc;Ibrahimbegovic, Adnan;Leger, Pierre
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.365-386
    • /
    • 2010
  • This paper presents the physical formulation of a 1D material model suitable for seismic applications. It is written within the framework of thermodynamics with internal variables that is, especially, very efficient for the phenomenological representation of material behaviors at macroscale: those of the representative elementary volume. The model can reproduce the main characteristics observed for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper, this material model is developed to be implemented in a finite element computer program. Therefore, for the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration required) are defined whenever possible and (ii) the conditions in which the presented model can enter the generalized standard materials class - whose elements benefit from good global and local stability properties - are clearly established. To illustrate the capabilities of this model - among them for Earthquake Engineering applications - results of some numerical applications are presented.

A computational setting of calcium leaching in concrete and its coupling with continuum damage mechanics

  • Nguyen, V.H.;Nedjar, B.;Torrenti, J.M.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.131-150
    • /
    • 2004
  • We present in this work a coupled phenomenological chemo-mechanical model that represents the degradation of concrete-like materials. The chemical behaviour is described by the nowadays well known simplified calcium leaching approach. And the mechanical damage behaviour is described by a continuum damage model which involves the gradient of the damage quantity. The coupled nonlinear problem at hand is addressed within the context of the finite element method. For the equation governing the calcium dissolution-diffusion part of the problem, special care is taken to treat the highly nonlinear calcium conductivity and solid calcium functions. The algorithmic design is based on a Newton-type iterative scheme where use is made of a recently proposed relaxed linearization procedure. And for the equation governing the damage part of the problem, an augmented Lagrangian formulation is used to take into account the damage irreversibility constraint. Finally, numerical simulations are compared with experimental results on cement paste.

혼합물의 열역학 (제1보). 이상기체 (Thermodynamics of Mixtures (I). Ideal Gases)

  • 윤창구
    • 대한화학회지
    • /
    • 제17권5호
    • /
    • pp.324-331
    • /
    • 1973
  • 이상기체 혼합물을 연속체의 물질역학과 비가역 변화의 열역학에서 개발된 방법으로 연구하였다. 자유 에너지의 함수 형태와 각개 성분의 기체법칙을 엔트로피 부등식으로부터 직접 유도하고 혼합물의 변형, 열 전도, 확산 및 화학반응이 받는 제약을 명시함으로서 앞으로 이 방법을 다른 물질들에 응용하는 데에 도움이 되도록 하였다.

  • PDF

발사체 관통 콘크리트 충격손상 모델 (Impact damage model of projectile penetration into concrete target)

  • 박대효;노명현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.633-636
    • /
    • 2006
  • Impact damage modeling of concrete under high strain rate loading conditions is investigated. A phenomenological penetration model that can account for complicated impact and penetration process such as the rate and loading history response of concrete, the microstructure-penetration interaction etc. is discussed. Constitutive law compatible with Second Law of thermodynamics and coupled damage and plasticity modelling based on continuum damage mechanics are also examined. The purpose of this paper is preliminarily to study with respect to impact and penetration models for concrete before the development of that model.

  • PDF

퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소해석(I) -오스테나이트에서 퍼얼라이트로의 변태- (An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(I) - From Austenite to Pearlite -)

  • 김옥삼;구본권
    • 열처리공학회지
    • /
    • 제7권4호
    • /
    • pp.233-243
    • /
    • 1994
  • Constitutive relation of thermoelasto-plastic material undergoing phase transformation during quenching process were developed on the basic of continuum thermodynamics. The metallic structure, temperature and residual stresses distributions were numerically calculated by the finite element technique. The metallic structure were defined by transformation from austenite to pearlite and characterized as a fuction of thermal history and mixture rule of phase. On the distribution of thermal stress along the radial direction, axial and tangential stresses are compressive in the surface, and tential in the inner part. Radial stress is tensile in the whole body. The reversion of residual stress takes plase at 11.5~15.5mm from the center.

  • PDF

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석 (Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model)

  • 이제원;왕세명;주재만;박승일;이성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중 (Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite)

  • 윤수진;김기근
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

불소고분자-방향족 용매계의 비이상적 흡수에 대한 확산 모델식의 적용 (Application of Diffusion Models to Anomalous Sorption in Fluoropolymer-aromatic Solvent Systems)

  • 이상화
    • 멤브레인
    • /
    • 제10권3호
    • /
    • pp.139-147
    • /
    • 2000
  • 불소고분자(ETFE, ECTFE, PVDF)내로 방향족 유기용매(벤젠, 톨루엔, 클로로벤젠)의 비정상 흡수실험에서 non-Fickian (혹은 비이상적인) 확산이 관측되었다. 본 연구에서는 Fick's 법칙에 바탕을 둔 확산모델식(Crank, Long & Richman, Berens & Hopfenberg, Neogi, Li)을 이용하여 방향족 유기용매의 흡수실험에서 관측된 비이상적 흡수데이터론 분석하였다. 모델식의 매개변수 값은 실험데이터와 모델 예측 값의 차이를 최소화하는 least square 법을 이용하여 결정하였다. Fickian 확산으로부터 약간 벗어나는 ETFE 흡수데이터는 앞에서 언급한 모델식들을 이용하여 모두 만족할 만한 결과를 얻었다. 특히 Neogi 모델식은 ETFE-용매계의 고유확산계수(0.4~0.8$\times$$10^-5{cm}^2$/day) 및 평형 확산계수(0.13~0.31$\times$$10^-4{cm}^2$/day), 고분자구조의 이완 속도상수 값을 예측해주었다. PVDF의 전형적인 sigmoidal 흡수데이터에 대해서는 Crank 모델이 비교적 잘 적용되었으며, 초기 확산계수와 평형 확산계수간의 비($D_{\infty}/D_i$)는 80~200의 값을 나타내주었다. 가속적인 흡수데이터를 나타내주는 ECTFE의 경우에는 모든 모델식들의 예측 결과가 상당히 벗어났다. Fickian 확산으로부터 많이 벗어나는 비이상적인 흡수데이터로부터 확산 이동성질과 고분자구조의 이완현상에 대한 정보를 얻기 위해서는 열역학이나 continuum mechanics에 바탕을 둔 새로운 모델식을 적용해야 할 것으로 사료된다.

  • PDF

폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식 (Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam)

  • 권순범;이제명
    • 한국전산구조공학회논문집
    • /
    • 제31권4호
    • /
    • pp.191-197
    • /
    • 2018
  • 폴리머 폼은 다공성을 가장 큰 특징으로 하는 재료이기 때문에, 본 연구에서 비가역 열역학 관점을 기반으로 폴리머 폼의 기공 성장 및 합체를 고려한 손상 탄성 구성방정식을 개발하였으며, 개발된 구성방정식은 unilateral 손상의 효과를 고려하였다. 유한요소해석의 적용을 위해 상용 유한요소해석 프로그램인 ABAQUS의 사용자 서브루틴 UMAT을 이용하여 제안된 구성방정식을 수치적으로 구현하였다. 비선형 유한요소해석 결과와 폴리머 폼의 인장 시험 결과와 비교를 통해 제안된 손상 모델의 유효성을 검증하였으며, 제안된 구성방정식의 재료모델상수가 손상에 미치는 영향에 대해 분석하였다.