• Title/Summary/Keyword: continuum elements

Search Result 113, Processing Time 0.024 seconds

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

Slip Effect at the Pile-soil Interface on Dragload (하향력을 받는 말뚝-지반 접촉면의 슬립 효과)

  • Jeong, Sang-Seom;Lee, Cheol-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.65-74
    • /
    • 2003
  • The dragload on pile groups in consolidating ground was investigated based on a numerical analysis. The case of a single pile and subsequently the response of groups were analyzed by 2D and 3D finite element studies. Conventional continuum elements and special slip elements were used in the analyses for comparison. Based on a limited parametric study, it is shown that dragload for a single pile and group effect are normally overestimated by continuum analyses, compared with the predictions by the slip analyses. The group effect was examined from the slip analysis by considering various factors such as pile configurations, surface loading, interface friction coefficient, and axial loading on piles. An examplary analysis and one previous experimental observation of dragload and group effects were back-analysed. The case histories demonstrated that the slip analysis might predict a better estimate of dragload and group effect compared to the no-slip continuum analysis.

Computational modeling of cracking of concrete in strong discontinuity settings

  • Oliver, J.;Huespe, A.;Pulido, M.D.G.;Blanco, S.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.61-76
    • /
    • 2004
  • The paper is devoted to present the Continuum Strong Discontinuity Approach (CSDA) and to examine its capabilities for modeling cracking of concrete. After introducing the main ingredients of the CSDA, an isotropic continuum damage model, which distinguishes tension and compression states, is used to implicitly induce a projected traction separation-law that rules the cracking phenomena. Criteria for onset and propagation of material failure and specific finite elements with embedded discontinuities are also briefly sketched. Finally, some representative numerical simulations of cracking, in plain and reinforced concrete specimens, using the CSDA are presented.

Collection of dynamical systems with dimensional reduction as a multiscale method of modelling for mechanics of materials

  • Kaczmarek, Jaroslaw
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2010
  • In this paper one introduces a method of multiscale modelling called collection of dynamical systems with dimensional reduction. The method is suggested to be an appropriate approach to theoretical modelling of phenomena in mechanics of materials having in mind especially dynamics of processes. Within this method one formalizes scale of averaging of processes during modelling. To this end a collection of dynamical systems is distinguished within an elementary dynamical system. One introduces a dimensional reduction procedure which is designed to be a method of transition between various scales. In order to consider continuum models as obtained by means of the dimensional reduction one introduces continuum with finite-dimensional fields. Owing to geometrical elements associated with the elementary dynamical system we can formalize scale of averaging within continuum mechanics approach. In general presented here approach is viewed as a continuation of the rational mechanics.

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF

Finite element vibration analysis of nanoshell based on new cylindrical shell element

  • Soleimani, Iman;Beni, Yaghoub T.;Dehkordi, Mohsen B.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • In this paper, using modified couple stress theory in place of classical continuum theory, and using shell model in place of beam model, vibrational behavior of nanotubes is investigated via the finite element method. Accordingly classical continuum theory is unable to correctly compute stiffness and account for size effects in micro/nanostructures, higher order continuum theories such as modified couple stress theory have taken on great appeal. In the present work the mass-stiffness matrix for cylindrical shell element is developed, and by means of size-dependent finite element formulation is extended to more precisely account for nanotube vibration. In addition to modified couple stress cylindrical shell element, the classical cylindrical shell element can also be defined by setting length scale parameter to zero in the equations. The boundary condition were assumed simply supported at both ends and it is shown that the natural frequency of nano-scale shell using the modified coupled stress theory is larger than that using the classical shell theory and the results of Ansys. The results have indicated using the modified couple stress cylindrical shell element, the rigidity of the nano-shell is greater than that in the classical continuum theory, which results in increase in natural frequencies. Besides, in addition to reducing the number of elements required, the use of this type of element also increases convergence speed and accuracy.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Finite element modeling of concentric-tube continuum robots

  • Baek, Changyeob;Yoon, Kyungho;Kim, Do-Nyun
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.809-821
    • /
    • 2016
  • Concentric-tube continuum robots have formed an active field of research in robotics because of their manipulative exquisiteness essential to facilitate delicate surgical procedures. A set of concentric tubes with designed initial curvatures comprises a robot whose workspace can be controlled by relative translations and rotations of the tubes. Kinematic models have been widely used to predict the movement of the robot, but they are incapable of describing its time-dependent hysteretic behaviors accurately particularly when snapping occurs. To overcome this limitation, here we present a finite element modeling approach to investigating the dynamics of concentric-tube continuum robots. In our model, each tube is discretized using MITC shell elements and its transient responses are computed implicitly using the Bathe time integration method. Inter-tube contacts, the key actuation mechanism of this robot, are modeled using the constraint function method with contact damping to capture the hysteresis in robot trajectories. Performance of the proposed method is demonstrated by analyzing three specifications of two-tube robots including the one exhibiting snapping phenomena while the method can be applied to multiple-tube robots as well.