• Title/Summary/Keyword: continuous wavelet

Search Result 154, Processing Time 0.022 seconds

Statistics and probability analysis of vehicle overloads on a rigid frame bridge from long-term monitored strains

  • Li, Yinghua;Tang, Liqun;Liu, Zejia;Liu, Yiping
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.287-301
    • /
    • 2012
  • It is well known that overloaded vehicles may cause severe damages to bridges, and how to estimate and evaluate the status of the overloaded vehicles passing through bridges become a challenging problem. Therefore, based on the monitored strain data from a structural health monitoring system (SHM) installed on a bridge, a method is recommended to identify and analyze the probability of overloaded vehicles. Overloaded vehicle loads can cause abnormity in the monitored strains, though the abnormal strains may be small in a concrete continuous rigid frame bridge. Firstly, the abnormal strains are identified from the abundant strains in time sequence by taking the advantage of wavelet transform in abnormal signal identification; secondly, the abnormal strains induced by heavy vehicles are picked up by the comparison between the identified abnormal strains and the strain threshold gotten by finite element analysis of the normal heavy vehicle; finally, according to the determined abnormal strains induced by overloaded vehicles, the statistics of the overloaded vehicles passing through the bridge are summarized and the whole probability of the overloaded vehicles is analyzed. The research shows the feasibility of using the monitored strains from a long-term SHM to identify the information of overloaded vehicles passing through a bridge, which can help the traffic department to master the heavy truck information and do the damage analysis of bridges further.

Spatial - Frequency Analysis of time-varying Coherence using ERP signals for attentional visual stimulus (시각 자극의 집중에 따른 시간 변화에 대한 뇌 유발전위의 공간 - 주파수간 상관 변화 분석)

  • Lee, ByuckJin;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.16 no.4
    • /
    • pp.527-534
    • /
    • 2013
  • In this study, we analyzed spatial-frequency relationship related brain function for change of the time during attentional visual stimulus through the analysis of Coherence. With experimentation about ERP(Event Related Potential)data, it revealed that change of the phase synchronization between different scalp locations at ${\theta}$, ${\alpha}$ band. ERP between left and right frontal lobes, between the frontal and central lobes showed the phase synchronization at the P100, N200, ERP between the frontal and occipital lobes showed the phase synchronization at the P300 related information of visual stimulus. Compared to STFT using the window of a fixed length, CWT is able to multi-resolution analysis with the adjustment of parameters of mother wavelet. Thus, coherence results with CWT was found to be effective for analysis of time-varying spatial-frequency relationship in ERP. The phase synchronization for inattentional visual stimulus was not observed.

A Study on Performance Improvement of Non-Profiling Based Power Analysis Attack against CRYSTALS-Dilithium (CRYSTALS-Dilithium 대상 비프로파일링 기반 전력 분석 공격 성능 개선 연구)

  • Sechang Jang;Minjong Lee;Hyoju Kang;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • The National Institute of Standards and Technology (NIST), which is working on the Post-Quantum Cryptography (PQC) standardization project, announced four algorithms that have been finalized for standardization. In this paper, we demonstrate through experiments that private keys can be exposed by Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) attacks on polynomial coefficient-wise multiplication algorithms that operate in the process of generating signatures using CRYSTALS-Dilithium algorithm. As a result of the experiment on ARM-Cortex-M4, we succeeded in recovering the private key coefficient using CPA or DDLA attacks. In particular, when StandardScaler preprocessing and continuous wavelet transform applied power traces were used in the DDLA attack, the minimum number of power traces required for attacks is reduced and the Normalized Maximum Margines (NMM) value increased by about 3 times. Conseqently, the proposed methods significantly improves the attack performance.

Active Lamb Wave Propagation-based Structural Health Monitoring for Steel Plate (능동 램파 전파에 기초한 강판의 구조건전성 모니터링)

  • Jeong, Woon;Seo, Ju-Won;Kim, Hyeung-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.421-431
    • /
    • 2009
  • This paper is the study on the verification of structural health monitoring (SHM) algorithm based on the ultrasonic guided wave. An active inspection system using Lamb wave (LW) for SHM was considered. The basic study about the application of this algorithm was performed for detecting the circular notch defect in steel plate. LW testing technique, pitch-catch method, was used for interpretation of circular notch defect with depth of 50% of plate thickness and 7 mm width. Damage characterization takes place by comparing $S_0$ mode sensor signals collected before and after the damage event. By subtracting the signals of both conditions from each other, a scatter signal is produced which can be used for damage localization. The continuous Gabor wavelet transform is used to attain the time between the arrivals of the scatter and sensor signals. A new practical damage monitoring algorithm, based on damage monitoring polygon and pitch-catch method, has been proposed and verified with good accuracy. The possible damage location can be estimated by the average on calculated location points and the damage extent by the standard deviation.

Analyzing on the cause of downstream submergence damages in rural areas with dam discharge using dam management data

  • Sung-Wook Yun;Chan Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.373-389
    • /
    • 2023
  • The downstream submergence damages caused during the flood season in 2020, around the Yongdam-dam and five other sites, were analyzed using related dam management data. Hourly- and daily-data were collected from public national websites and to conduct various analyses, such as autocorrelation, partial-correlation, stationary test, trend test, Granger causality, Rescaled analysis, and principal statistical analysis, to find the cause of the catastrophic damages in 2020. The damage surrounding the Yongdam-dam in 2020 was confirmed to be caused by mis-management of the flood season water level. A similar pattern was found downstream of the Namgang- and Hapcheon-dams, however the damage caused via discharges from these dams in same year is uncertain. Conversely, a different pattern from that of the Yongdam-dam was seen in the areas downstream of Sumjingang- and Daecheongdams, in which the management of the flood season water level appeared appropriate and hence, the damages is assumed to have occurred via the increase in the absolute discharge amount from the dams and flood control capacity leakage of the downstream river. Because of the non-stationarity of the management data, we adapted the wavelet transform analysis to observe the behaviors of the dam management data in detail. Based on the results, an increasing trend in the discharge amount was observed from the dams after the year 2000, which may serve as a warning about similar trends in the future. Therefore, additional and continuous research on downstream safety against dam discharges is necessary.

Application of Deconvolution Methods to Improve Seismic Resolution and Recognition of Sedimentary Facies Containing Gas Hydrates (동해 가스하이드레이트 퇴적상 해석 및 분해능 향상을 위한 디컨볼루션 연구)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Kim, Han-Joon;Jeong, Gap-Sik;Yoo, Dong-Geun;Ryu, Byoung-Jae;Kang, Nyeon-Keon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.323-329
    • /
    • 2010
  • Three deconvolution methods were applied to stacked seismic data obtained to investigate gas-hydrates in the Ulleung Basin, East Sea: (1) minimum-phase spiking deconvolution, (2) minimum-phase spiking deconvolution using an averaged wavelet from all traces, and (3) deterministic deconvolution using a wavelet with phases computed from well-logs. We analyzed the resolving property of these methods for lithological boundaries. The first deconvolution method increases temporal resolution but decreases lateral continuity. The second method shows, in an overall sense, similar results to the spiking deconvolution using a minimum phase wavelet for each trace; however, it results in a more consistent and continuous bottom-simulating reflector (BSR) and better resolved sub-BSR reflectors. The results from the third method reveal more detailed internal structures of debris-flow deposits and increased continuity of reflectors; in addition, the seafloor reflection and the BSR appear to have changed to a zero-phase waveform. These properties help more precisely estimate the distribution and reserves of gas hydrates in the exploration area by improving analysis of facies and amplitude of the BSR.

Fast Vehicle Detection based on Haarlike and Vehicle Tracking using SURF Method (Haarlike 기반의 고속 차량 검출과 SURF를 이용한 차량 추적 알고리즘)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • This paper proposes vehicle detection and tracking algorithm using a CCD camera. The proposed algorithm uses Haar-like wavelet edge detector to detect features of vehicle and estimates vehicle's location using calibration information of an image. After that, extract accumulated vehicle information in continuous k images to improve reliability. Finally, obtained vehicle region becomes a template image to find same object in the next continuous image using SURF(Speeded Up Robust Features). The template image is updated in the every frame. In order to reduce SURF processing time, ROI(Region of Interesting) region is limited on expended area of detected vehicle location in the previous frame image. This algorithm repeats detection and tracking progress until no corresponding points are found. The experimental result shows efficiency of proposed algorithm using images obtained on the road.

Measurement of Arterial Pulse Wave at the Temple Using PZT Piezo Sensor

  • Kil Se Kee;Han Young Hwan;Lee Eung Hyuk;Park Young Bae;Cho Heung Ho;Min Hong Ki;Hong Seung Hong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.772-775
    • /
    • 2004
  • Generally, arterial pulse waves are measured at the radial arterial of wrist or carotid arterial of neck using a sensor such as pressure sensor, piezoelectric sensor or optic sensor. But in this paper, arterial pulse wave is measured at the temple using PZT piezo sensor which is attached on the temple in form of a hair-band. Arterial Pulse waves are generally measured when a reagent is in a static state. But in this paper, we implemented the arterial pulse wave measurement system, as a previous stage of the arterial pulse wave measurement system for running at outdoors or on a running machine, that measures arterial pulse waves at the temple, which is the least moving part when running. Thorough the continuous study, if the motion artifact when running is possible to be removed, the system will be able to perform monitoring of running men's states and especially emergency signals such as serious pulse waves of an/old and feeble persons and handicapped persons.

  • PDF

Implementation and evaluation of the BCG measurement system for non-constrained health monitoring (무구속 건강모니터링을 위한 심탄도 계측 시스템 구현 및 평가)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This research proposes measuring of BCG(ballistocardiogram) to monitor heart activities in a non-constrained environment, at home or work. Unlike with ECG, measuring BCG does not require the attachment of leads on the subject's body and allows signal measuring in a non-constrained state. It enables effective long-term monitoring of cardiac conditions. In this study a chair type BCG measurement system to continuous monitor the activity of the heart is implemented. The instrument consists of upper petal and ready for press of chair load cell sensor is attached to measure the change of the object's weight. In order to extract the output ballistic signal from the weight and force sensor signals. Beside the signal processing circuit for the digital conversion, the ballistic signal is detected using DAQ equipment. Signal processing algorithm including wavelet transforms for noise cancellation, template matching for normalization and peak detection in BCG is developed. ECG and BCG were concurrently measured to evaluate the performance of the system, and comparing the characteristics of the two signals verified the possibility of the system in non-constrained and nonconscious health monitoring.

A study on identification of the damping ratio in a railway catenary system (철도 가선시스템의 감쇄 특성 파악에 관한 연구)

  • Park Sungyong;Jeon Byunguk;Lee Eungshin;Cho Yonghyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.529-533
    • /
    • 2005
  • A railway catenary system which supplies a train with electric power is an important system in determining the maximum speed of an electric train. However, a pantograph could be separated from a contact wire because of reciprocal action between a pantograph with constant upward force and a catenary system. The contact loss of a pantograph-catenary system is mainly affected by the dynamic characteristics of damping and wave propagation velocity of contact wire. For increasing speed of an electrical train, it is necessary to establish the techniques to identify the modal parameter of a catenary system through experiment. However, it is difficult to decouple each mode and to extract respect ive damping rat io since a catenary system has an extremely high modal density. For this reason, mode decoupling process to identify modal parameters is a principal technique in analyzing a catenary system. In this paper, the damping extract ion method for a catenary system using the continuous wavelet transform is discussed.

  • PDF