• Title/Summary/Keyword: continuous vibration

Search Result 443, Processing Time 0.026 seconds

Sensitivity Analysis of input shaping filter designed in the Z-domain (Z-영역에서 설계된 입력성형필터의 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.883-888
    • /
    • 1999
  • To obtain high positioning auccuracy for a long, flex bleman Ipulator, residual vibration must be removed from the tip motion. But it is difficult to control the vibration of low frequency. There are open-loop and closed loop methods in the elimination of the residual vibration. We inroduce input shaping technique has been used as a simple open-loop method of controlling the residual vibration of a flexible manipulator. Design of input shaper in the continuous time domain is complicated. This paper presents a new technique that designs input shaper in the z-domain and analyzes input shaping method in the z-domain. This technique is simple and easy to design input shaper.

  • PDF

Condition Monitoring in a Gear with Initial Pitting Using Phase Map of Wavelet Transform (웨이블렛 변환의 위상 지도를 이용한 초기 피팅 결함을 갖는 기어의 상태 감시)

  • 심장선;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.590-595
    • /
    • 2001
  • Vibration transient generated by developing localized fault in gear can be used as indicators of condition monitoring in a gear. In this paper, we propose the phase map for a fault signal using continuous wavelet transform to detect this vibration transient. Local fault induces the abrupt fluctuation of load exciting tooth and phase lag in the vibration signal measured on the gearbox. The relatively large fault like "tip breakage" easily can be detected by the clear fluctuation of exciting load. However, minor fault like "initial pitting" cannot be detected using the load fluctuation. To detect this kind of minor fault, the phase map for a fault signal is taken into account. The phase lag by minor fault is observed well in the phase map.

  • PDF

Dynamic Characteristics of Bolted Joint in Tube Line by External Vibration (외부 가진을 받는 관로계에서 볼트 결합부의 동특성)

  • Park, T.W.;Kim, Y.K.;Shin, G.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.38-43
    • /
    • 2001
  • This paper describes the effect of dynamic characteristics in tube line by external vibration conveying fluid with the power steering system. By the experimental analysis we found out that the factor of system vibration is the fluid-structure interaction of tube line. In fluid-filled tube system we study on the influence that the natural frequency of system and the frequency of wave motion produce upon through experiment. Experiments are modal test, frequency response function in continuous system, and vibrating tests when the system is driving with bolted clamping joint condition. From the results of the experimental studies, we obtained that the natural frequencies of system are very important than the wave induced vibrations. And we found that the tendency of system vibration level was decreased by bolting force, bolting condition and clamping distance.

  • PDF

Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient (동강성계수의 전달을 이용한 축계의 비틀림진동 해석)

  • Moon, D.H.;Choi, M.S.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard;Hooman Zoka;Kyung Chun Kim
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

A Study on The Vibration Attenuation of a Driver Seat Using an MR fluid Damper

  • Park, Chan-Ho;Ahn, Byeong-Il;Jeon, Do-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.6-111
    • /
    • 2001
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to conventional seats. The system locates between a seat cushion and base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system. The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

  • PDF

Damage Size Estimation by the Continuous Wavelet Transform of Bending Wave Signals (굽힘파 신호의 연속 웨이블렛 변환을 이용한 결함 크기 평가)

  • Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.364.1-364
    • /
    • 2002
  • This work is concerned with the damage size estimation by using propagating bonging wave signals in a beam. To this end, we apply the continuous wavelet transforms to the incident waves and the reflected waves from a small damage in a long cylindrical beam. In particular, we propose to use the relative magnitudes of the two kinds of waves along the ridges in the wavelet transformed time-frequency planes. (omitted)

  • PDF

Dynamic Analysis of a Geometrical Non-linear Plate (기하학적 비선형성을 갖는 평판의 동특성 해석)

  • 임재훈;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF