• Title/Summary/Keyword: continuous flow

Search Result 1,503, Processing Time 0.024 seconds

Numerical analysis of continuous casting process with electromagnetic brake (연속주조공정에서의 EMBR의 수치해석)

  • 김현경;유흥선;유수열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.766-773
    • /
    • 1999
  • A numerical analysis has been performed solidification problem using the fixed grid-enthalpy method with enthalpy-porosity relation. A modified standard $k-\varepsilon$ model was applied to describe the influence of turbulent flow. Computational procedures are based on the finite volume method and the non-staggered grid system. Comparisons with the different three experimental results show that applying a modified standard $k-\varepsilon$model in mushyzone is better than the previous computation results. This paper includes another EMBR's influences such as change of velocity field, Increasement of temperature and dispersion of flow out of nozzle into the flow field. These EMBR's influences are compared to case without EMBR.

  • PDF

Convection Heat Transfer Coefficient of a Meat Cube in a Continuous Flow Sterilizing System

  • Hong, Ji-Hyang;Han, Young-Joe;Chung, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.328-333
    • /
    • 2005
  • Finite difference model and dynamic thermal property evaluation system were developed to estimate convection heat transfer coefficient by modeling temperature-time profile of beef cube in continuous flow sterilizing system. As input parameters of the model, specific heat and thermal conductivity values of beef frankfurter meat were independently measured from 20 to $80^{\circ}C$. Convection heat transfer coefficient was estimated by comparing simulated and measured temperature-time profiles. Actual temperature-time profiles of meat cube were measured at flow rates of 15, 30, and 45 L/min and viscosities from 0 to 15 cp, and mean values of convection heat transfer coefficients ranged from 792 to $2107\;W/m^2{\cdot}K$. Convection heat transfer coefficient increased with increase in flow rate and decreased as viscosity increased.

LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD

  • Zhongdong Qian;Yulin Wu
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.

Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air (아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성)

  • Lee, In-Chul;Byun, Young-Wu;Koo, Ja-Ye
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

Conversion of Mixed Fat into Biodiesel in Plug Flow Reactor Using Alkali and Mixed Catalysts (관형반응기에서 알칼리 및 혼합촉매를 사용한 혼합지방의 바이오디젤화)

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • The continuous transesterification of mixed fat was done on the plug flow reactor packed with the static mixers. The transesterification using 0.5 wt% KOH, 0.8 wt% TMAH and mixed catalyst[40 v/v% KOH(0.5 wt%)+60 v/v% TMAH(0.8 wt%)] was conducted with the changes of molar ratios, weight percentage of beef, flow rates and number of static mixer's elements at $65^{\circ}C$. The overall conversion of mixed fat at 1:8 molar ratio, 50 wt% of beef and 24 of static mixer's elements increased until 0.7mL/min of flow rate. The overall conversion of mixed fat showed 96% at those conditions. So, the optimum operating conditions on tublar reactor were 1:8 molar ratio, 50 wt% of beef, 0.7 mL/min of flow rate and 24 of static mixer' s elements.

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

High Temperature Mechanical Properties of Continuous Cast and Extruded ZK60A Alloy (연속주조 압출 ZK60A 합금의 고온 기계적 특성)

  • Ahn, B.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Continuous casting is a process where molten metal is solidified into a semi-finished billet on a large scale with either a rectangular or round cross section for subsequent processing. The use of continuous casting provides an opportunity for producing material on a practical industrial scale with lower cost than conventional casting. In the current study, the material was fabricated by continuous casting and subsequent extrusion. Tensile tests were conducted on continuous cast ZK60A after extrusion over a range of strain rates at temperatures from 473K to 623K. The alloy exhibits a quasi-superplastic behavior with a maximum recorded elongation of ~250% at 523K when tested with an initial strain rate of $10^{-5}/s$. The experiments give a strain rate sensitivity exponent of 0.3~0.4 and an activation energy of 108 kJ/mol. From the current investigation, it was found that the high-temperature plastic flow of the ZK60A is controlled by a dislocation viscous glide mechanism.

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

Phosphate removal by the continuous flow pilot plant with converter slag (연속흐름 모형실험장치를 이용한 전로슬래그에 의한 인산염 제거)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.453-459
    • /
    • 2014
  • The excessive concentration of phosphorus in the river and reservoir is a deteriorating factor for the eutrophication. The converter slag was used to remove the phosphate from the synthetic wastewater. Influencing factors were studied to remove soluble orthophosphate with the different particle sizes through the batch and the column experiments by continuous flow. Freundlich and Langmuir adsorption isotherm constants were obtained from batch experiments with $PS_A$ and $PS_B$. Freundlich isotherm was fitted better than Langmuir isotherm. Regression coefficient of Freundlich isotherm was 0.95 for $PS_A$ and 0.92 for $PS_B$, respectively. The adsorption kinetics from the batch experiment were revealed that bigger size of convert slag, $PS_A$ can be applied for the higher than 3.5 mg/L of phosphate concentration. The pilot plant of continuous flow was applied in order to evaluate the pH variation, breakthrough points and breakthrough adsorption capacity of phosphate. The variation of pH was decreased through the experimental hours. The breakthrough time was 1,432 and 312 hours to 10 mg/L and 50 mg/L for the influent concentration, respectively. The breakthrough adsorption capacity was 3.54 g/kg for 10 mg/L, and 1.72 g/kg for 50 mg/L as influent phosphate concentration.

A study on Design and Evaluation of The Continuous Flow Intersection (연속교차로의 설계 및 평가에 관한 연구)

  • 박창수
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.5
    • /
    • pp.79-86
    • /
    • 1999
  • Traffic jams of our country are due to the shortage of roadway as compared with the traffic, however. they are sometimes due to inconsistency of the roadway capacity. Inconsistency of the roadway capacity comes from the difference of cycle length, phase length and number of Phase between major intersection and minor intersection. Specialty increasing number of Phase due to left-turn movements bring out decrease of the arterial capacity, deterioration of the arterial offset. The Purpose of this research is to introduce and analyze the continuous flow intersection to solve the bottleneck of the major intersection. The major contents of this research introduce the concept and design consideration for the continuous flow intersection and also analyze delay, fuel consumption and emissions among multiphase intersection, grade separated intersection and continuous flow intersection. This research analyze the sensitivities according to change of the left-turn traffic volume and also evaluate the cost-effectiveness through the total cost analysis among three of them.

  • PDF