• 제목/요약/키워드: continuous flow

검색결과 1,503건 처리시간 0.034초

전자기 브레이크를 적용한 연속주조공정에서의 난류유동 및 응고의 3차원 해석 (Three-Dimensional Analysis of the Coupled Turbulent Flow and Solidification During a Continuous Casting Process with Electromagnetic Brake)

  • 김덕수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1254-1264
    • /
    • 1999
  • A three-dimensional coupled turbulent fluid flow and solidification process were analyzed in a continuous casting process of a steel slab with Electromagnetic Brake(EMBR). A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. The electromagnetic field was described by Maxwell equations. Tile application of EMBR to the mold region results in the decrease of the transfer of superheat to the narrow face, the increase of temperature in free surface region and most liquid of submold region, and the higher temperature gradient near the solidifying shell. The increasing magnetic flux density effects mainly to the surface temperature of the solidifying shell of narrow face, hardly to the one of wide face. It is seen that in the presence of EMBR a thicker solidifying shell is obtained at the narrow face of the slab.

연속흐름 중합효소연쇄반응칩 제작을 위한 인듐 산화막 전극의 특성분석 (Characteristics of Indium-Tin-Oxide electrode for continuous-flow PCR chip)

  • 정승룡;이인제;김준혁;김한수;김재완;최영진;강치중;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1386-1387
    • /
    • 2006
  • PDMS와 ITO 유리를 이용하여 continuous-flow PCR chip을 제작하였다. PDMS를 이용하여 microchannel을 형성하여 주었고, ITO electrode를 heater와 sensor로 사용하기 위하여 반도체 공정을 통해 패턴을 형성하였다. microchannel내에 흐르는 시료의 온도를 제어하기 위하여 heater와 sensor를 calibration을 하였다. ITO heater는 인가된 전압에 대해 매우 선형적인 발열을 하였으며, ITO sensor는 온도에 대해 선형적인 저항 변화를 나타낸 바, 그 결과 continuous-flow PCR chip의 정확한 온도 제어가 가능하였다.

  • PDF

Release Pattern of Urea from Metal-urea-clay Hybrid with Montmorillonite and Its Impact on Soil Property

  • Kim, Kwang-Seop;Choi, Choong-Lyeal;Lee, Dong-Hoon;Seo, Young-Jin;Park, Man
    • 한국토양비료학회지
    • /
    • 제44권4호
    • /
    • pp.545-550
    • /
    • 2011
  • Urea intercalated into montmorillonite (MT) exhibits remarkably enhanced N use efficiency, maintaining its fast effectiveness. This study dealt with the release property of urea from metal-urea-clay hybrid with MT (MUCH) under continuous-flow conditions and the cumulative impacts of its successive application on physicochemical properties of soils. Releases of urea were completed within 4 hrs under continuous-flow condition regardless of the types and the leaching solutions. However, urea release property was significantly affected by both the form of fertilizer and the presence of electrolytes in solution. The fast release property of urea from MUCH in continuous-flow condition was not significantly affected by soil properties such as soil pH and soil texture. In addition, its successive application did not lead to any noticeable change in soil physicochemical properties, water stable aggregate rate, water holding capacity and cation exchange capacity in both sandy loam and clay loam soils. Therefore, this study strongly supported that urea intercalated into MT could be applied as fast-effective N fertilizer, in particular for additional N supply.

A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms

  • Kim, Ju-Hyoung;Kang, Eun Ju;Kim, Keunyong;Kim, Kwang Young
    • ALGAE
    • /
    • 제33권4호
    • /
    • pp.359-366
    • /
    • 2018
  • Mesocosm experiments conducted for ecological purposes have become increasingly popular because they can provide a holistic understanding of the biological complexities associated with natural systems. This paper describes a new outdoor mesocosm designed for $CO_2$ perturbation experiments of benthos. Manipulated the carbonate chemistry in a continuous flow-through system can be parallelized with diurnal changes, while irradiance, temperature, and nutrients can vary according to the local environment. A target hydrogen ion activity (pH) of seawater was sufficiently stabilized and maintained within 4 h after dilution, which was initiated by the ratio of $CO_2$-saturated seawater to ambient seawater. Specifically, pH and $CO_2$ partial pressure ($pCO_2$) levels gradually varied from 8.05-7.28 and $375-2,691{\mu}atm$, respectively, over a range of dilution ratios. This mesocosm can successfully manipulate the pH and $pCO_2$ of seawater, and it demonstrates suitability for ocean acidification experiments on benthic communities.

Electrokinetic remediation of diesel-contaminated silty sand under continuous and periodic voltage application

  • Asadollahfardi, Gholamreza;Rezaee, Milad
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.456-462
    • /
    • 2019
  • Hydrocarbon contamination is among the most challenging problems in soil remediation. Electrokinetic method can be a promising method to remediate hydrocarbon-contaminated soils. Electrokinetic method consists of different transport phenomena including electro-migration, electrophoresis, and electroosmotic flow. Electroosmotic flow is the main transport phenomenon for hydrocarbon removal in soil porous media. However, the main component of hydrocarbons is the hydrophobic organic which indicates low water solubility; therefore, it makes the electroosmotic flow less effective. The objective of the present study is to enhance electrokinetic remediation of diesel-contaminated silty sand by increasing the solubility of the hydrocarbons in the soil and then increase the efficiency. For this purpose, sodium dodecyl sulfate (SDS) was used as a catholyte. In this content, SDS 0.05 M was used as catholyte and $Na_2SO_4$ 0.1 M was used as an anolyte. Low (1 V/cm) and high (2 V/cm) voltage gradients were used in periodic and continuous forms. The best removal efficiency was observed for high voltage gradient (2 V/cm) in a periodic form, which was 63.86. This result showed that a combination of periodic voltage application in addition to the employment of SDS is an effective method for hydrocarbon removal from low permeable sand.

Gas Bubble Driven Circulation Systems에서의 이상유동 특성의 시뮬레이션 (A Simulation on the Two-Phase Flow Characteristics in Gas Bubble Driven Circulation Systems)

  • 최청렬
    • 한국시뮬레이션학회논문지
    • /
    • 제7권2호
    • /
    • pp.17-32
    • /
    • 1998
  • The flow fields in Gas Bubble Driven Circulation Systems were numerically analyzed. In various gas flow rate and bubble size, the flow characteristics were predicted. Eulerian-Eulerian approach was used for the formulation of both the continuous and dispersed phases. The modification of the general purpose computer program PHOENICS code was employed to predict the mean flow fields, turbulent characteristics, gas dispersion, volume fraction. The predicted shows very satisfactory agreement with experimental results for all regions of ladle. The results are of interest in the design and operation of wide variety of material processing.

  • PDF

디젤오염토양의 Bench Scale 처리에 있어서 벤팅모드 비교 (Comparison of Venting Modes for Bench Scale Treatment of Diesel Contaminated Soil)

  • 김영암;이용희;이동선;서명교
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.499-505
    • /
    • 2006
  • Bioventing efficiency was compared in a continuous and an intermittent(6hr injection and 6hr rest) air injection mode. Two lab-scale columns which packed with 5 kg of soil artificially contaminated by diesel oil were operated. The columns were maintained at the $25^{\circ}C{\pm}2.5$ in order to minimize the effect of exterior temperature variation. The flow rate of air injection mode were maintained constantly at the flow rate of 10 ml/min. The moisture of the columns was stably maintained at $60{\sim}80%$ of field capacity. The nutrient compounds were added to make C:N:P ratio as 100:10:l. The continuous and intermittent injection modes showed 67.56% and 69.63% reduction of initial TPH concentration during 90 days, respectively. Two venting modes showed similar results in the analysis of the trends of the hydrocarbon utilizing bacterial counts for operating periods. The carbon dioxide production rate of the continuous injection mode was higher than that of intermittent injection mode. The loss of diesel oil by volatilization in the continuous and intermittent injection modes were about 5% and 1%, respectively. The lower volatilization loss in the intermittent injection mode suggested that the biodegradation of TPH in the intermittent injection mode was greater than that of the continuous mode. These results suggested that the intermittent injection mode is more efficient than the continuous venting mode.

Effects of aeration and centrifugation conditions on omega-3 fatty acid production by the mixotrophic dinoflagellate Gymnodinium smaydae in a semi-continuous cultivation system on a pilot scale

  • Ji Hyun You;Hae Jin Jeong;Sang Ah Park;Se Hee Eom;Hee Chang Kang;Jin Hee Ok
    • ALGAE
    • /
    • 제39권2호
    • /
    • pp.109-127
    • /
    • 2024
  • High production and efficient harvesting of microalgae containing high omega-3 levels are critical concerns for industrial use. Aeration can elevate production of some microalgae by providing CO2 and O2. However, it may lower the production of others by generating shear stress, causing severe cell damage. The mixotrophic dinoflagellate Gymnodinium smaydae is a new, promising microalga for omega-3 fatty acid production owing to its high docosahexaenoic acid content, and determining optimal conditions and methods for high omega-3 fatty acid production and efficient harvest using G. smaydae is crucial for its commercial utilization. Therefore, to determine whether continuous aeration is required, we measured densities of G. smaydae and the dinoflagellate prey Heterocapsa rotundata in a 100-L semi-continuous cultivation system under no aeration and continuous aeration conditions daily for 9 days. Furthermore, to determine the optimal conditions for harvesting through centrifugation, different rotational speeds of the continuous centrifuge and different flow rates of the pump injecting G. smaydae + H. rotundata cells into the centrifuge were tested. Under continuous aeration, G. smaydae production gradually decreased; however, without aeration, the production remained stable. Harvesting efficiency and the dry weights of omega-3 fatty acids of G. smaydae + H. rotundata cells at a rotational speed of 16,000 rpm were significantly higher than those at 2,000-8,000 rpm. However, these parameters did not significantly differ at injection pump flow rates of 1.0-4.0 L min-1. The results of the present study provide a basis for optimized production and harvest conditions for G. smaydae and other microalgae.

연속(連續) 연소장치(燃燒裝置)에 있어서 화염(火焰)의 안전성(安全性)에 관(關)한 실험적(實驗的) 연구(硏究) (Experimental Investigation of Flame Stability in Continuous Flow Type Combustion Equipment)

  • 이근오;김용수;양옥용
    • 한국안전학회지
    • /
    • 제2권1호
    • /
    • pp.51-57
    • /
    • 1987
  • An experimental study was made of flame stabilization in unconfined turbulent swirling propane gas flames using various degrees of swirl and equivalence ratios. This study was carried out to investigate the effects of swirl number and equivalence ratio on the flow characteristics and the combustion characteristics in both nonreacting and reacting flow field of the model combustor which symplifys the continuous type combustor for the practical use.

  • PDF

Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

  • Jin, Young Sool;Kim, Myung Soo;Kim, Su Young;Paik, Doo Jin
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.30-36
    • /
    • 2011
  • The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic $Galvanizing^{TR}$ system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.