• Title/Summary/Keyword: continuous adsorption

Search Result 177, Processing Time 0.022 seconds

Biofilter Model for Robust Biofilter Design: 1. Adsorption Behavior of the Media of Biofilter (강인한 바이오필터설계를 위한 바이오필터모델: 1. 바이오필터 담체의 흡착거동)

  • Lee, Eun Ju;Seo, Kyo Seong;Jeon, Wui-Sook;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.149-154
    • /
    • 2012
  • The adsorption and desorption behavior of biofilter-medium was investigated on the performance of an adsorption column. Continuous flow-isothermal adsorption experiments were performed to treat waste air containing such a VOC as ethanol under the same condition of > 90% relative humidity as the condition of the feed to a biofilter process. In case of feeding waste air containing ethanol of 1,000 ppmv (or 2,050 mg ethanol/$m^3$) to the adsorption system at the rate of 2 L/min, the onsets of its breakthrough and reaching the state of dynamic equilibrium at the exit had been delayed 10 and 3 times, respectively, later than those at the 1st stage sampling port. Moreover, in case of 2,000 ppmv (or 4,100 mg ethanol/$m^3$), they had been delayed 9 and 3 times, respectively. Thus, regardless of feeding concentration, the ratios of delaying period were observed to be quite consistent each other at the exit of the adsorption column. With regard to the period of desorption, the ratios of delaying period were consistent each other to be 1.5 for both cases. In addition, the effect of microbial activity and sterilization-process was studied on adsorption equilibrium. The ethanol concentration in the vapor phase of vials packed with sterilized granular activated carbon (GAC) was quite consistent to that with unsterilized GAC. However, the ethanol concentrations in the vapor phase of vials packed with unsterilized compost and the unsterilized mixture of GAC and compost were higher than those with sterilized compost and the sterilized mixture of GAC and compost, respectively.

Estimation of Phosphorus Adsorption Capacity of Alum-amended and Composted Paper Mill Sludge (제지슬러지에 대한 alum 처리 및 퇴비화에 따른 인 흡착능 변화)

  • Lee, In-Bog;Chang, Ki-Woon;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • Excess application of paper mill sludge (PMS) in field can limit phosphorus uptake by crops because aluminum presented in the sludge can fix or adsorb available phosphorus which is necessary for crop growth. To investigate phosphorus (P) adsorption characteristics of PMS, we examined P adsorption maximum $(X_m)$ using Langmuir isotherm and P adsorption energy constant $(K_f)$ using Freundlich isotherm for PMS without alum, PMS with alum, and composted PMS with alum through a laboratory incubation test. The maximum P adsorption capacities were 800 ${\mu}g\;g^{-1}$ in soil, 47 $mg\;g^{-1}$ in PMS without alum and 61 $mg\;g^{-1}$ in PMS with alum. P adsorption capacity with alum treatment for PMS increased by 30%. That of PMS compost was 68 $mg\;g^{-1}$ and showed that composting increases 11% of P adsorption. Freundlich constant $K_f$ was 22 in check soil, while $K_f$ values in PMS without alum and in PMS with alum were 398 and 426, respectively. After composting, $K_f$ value of PMS compost significantly increased as 1,819. In conclusions, p adsorption capacity for PMS were increased by alum treatment or composting and therefore excess or continuous land application of alum-amended or composted PMS can limit P uptake for crops by reducing available P in sell.

Evaluation for adsorption of low concentration of indoor $CO_2$ adsorption using zeolite and alkali metal (제올라이트 및 알칼리금속을 이용한 실내용 저농도 $CO_2$ 흡착제의 성능 평가)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Cha, Yu-Joung;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.494-503
    • /
    • 2013
  • In this study, $CO_2$ adsorbent was produced for minimizing energy loss due to ventilation within the building. For improved selectivity about low concentration of $CO_2$ in multiple-use facilities, the ball type adsorbent was modified from a commercial zeolite, alumina, alkali metals and activated carbon with mixing LiOH, binder, and $H_2O$. We measured specific surface area, pore characteristic, and crystal structure of the modified adsorbent. Effects of alkalization on the absorptive properties of the adsorbents were investigated. Continuous column tests (2,000 ppm) and batch chamber tests ($4m^3$, 5,000ppm) showed that the modified adsorbent indicated about the selectivity of $CO_2$ more than 9.7% (0.613 mmol/g) compared with ordinary adsorbents and $CO_2$ removal efficiency of 88.8% within l hour, respectively. It was estimated that the modified adsorbent was applicable to indoor environments.

Proposal of enhanced treatment process based on actual pilot plant for removal of micropharmaceuticals in sewage treatment plants

  • Lee, Shun-hwa;Park, Yun-kyung;Lee, Miran;Lee, Byung-dae
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.588-596
    • /
    • 2020
  • This study was carried out to increase the treatment efficiency through the improvement of the conventional biological process, and to propose the optimal treatment direction. The optimal treatment conditions were derived based on the results of the spike damage tests in each single process. The removal efficiency of micropharmaceuticals was further increased when an ozone treatment process was added to the biological process compared to the single process. The soil and activated carbon adsorption process was introduced in the post-treatment to remove the micropharmaceutical residues, and the removal efficiency of the pharmaceduticals in the final effluent was more than 85% in spike damage experiment. In particular, the continuous process of biological treatment-ozone-adsorption could ensure the stable treatment of micropharmaceuticals, which had not been efficiently removed in the single process, as it showed more than 80% removal efficiency. Therefore, it is expected that the addition of the ozone oxidation and activated carbon adsorption process to the existing sewage treatment facilities can contribute to the efficient removal of micropharmaceuticals.

A study on the application of mill scale-derived magnetite particles for adsorptive removal of phosphate from wastewater (인제거용 흡착제로서 밀스케일로부터 선별된 마그네타이트 적용 연구)

  • Kim, Yunjung;Doliente, Jonica Ella;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2017
  • Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.

Volatile organic compounds emitted from printing processes and their removal by adsorption (인쇄업에서 배출되는 반응성 VOCs 종류와 흡착 제거 방법의 적용)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, Ji Hyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.396-403
    • /
    • 2018
  • In this study, volatile organic compounds (VOCs) emitted from printing industries were analyzed, and an inorganic adsorbent, ${\gamma}-alumina$, was selected for the effective control of the VOC emissions. Printing processes commonly require inks, thinners, and cleaners, and they were mixed organic solvents containing aromatic compounds, ketones, and alcohols. Therefore, toluene, methyl ethyl ketone (MEK), and isopropyl alcohol (IPA) were selected as model compounds for this study. The adsorptive properties using ${\gamma}-alumina$ were determined for the model compounds. Both batch isotherm and continuous flow column tests demonstrated that the adsorption capacity of MEK and IPA was 3~4 times higher than that of toluene. The column test performed at an inlet toluene concentration of 100 ppm showed that an 80% breakthrough for toluene was observed after 3 hours, but both MEK and IPA were continuously adsorbed during the same time period. A numerical model simulated that the ${\gamma}-alumina$ could remove toluene at a loading rate of 0.4 mg/min only for a 4-hour period, which might be too short of a duration for real applications. Consequently, lifetime enhancement for ${\gamma}-alumina$ must be implemented, and ozone oxidation and regeneration would be feasible options.

Applications of carbon-based materials in solid phase micro-extraction: a review

  • Guo, Jian;Park, Soo-Jin;Meng, Long-Yue;Jin, Xinghua
    • Carbon letters
    • /
    • v.24
    • /
    • pp.10-17
    • /
    • 2017
  • With continuous development in the field of sample preparation technology, solid phase micro-extraction (SPME) has been widely used in analytical chemistry for high extraction efficiency and convenient operation. Different materials lead to different extraction results. Among existing materials, carbon-based materials are still attracting attention from scientists due to their excellent physical and chemical properties as well as their modifiable surfaces, which could enhance the adsorption effects of SPME fiber. This review introduces the preparation methods and applications of different kinds of carbon-based material coatings on fibers. In addition, directions for future research on carbon material composites are discussed.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Column Removal of Trichloroethylene and Dichloromethane using Low Cost Activated Carbon

  • Radhika, M.;Lee, Young-Seak;Palanivelu, K.
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • Coconut shell activated carbon (CSAC) was investigated for its ability in the removal of two neutral chlorinated organic compounds, namely trichloroethylene (TCE) and dichloromethane (DCM) from aqueous solution using a packed bed column. The efficiency of the prepared activated carbon was also compared with a commercial activated carbon (CAC). The important design parameters such as flow rate and bed height were studied. In all the cases the lowest flow rate (5 mL/min) and the highest bed height (25 cm) resulted in maximum uptake and per cent removal. The experimental data were analysed using bed depth service time model (BDST) and Thomas model. The regeneration experiments including about five adsorption-desorption cycles were conducted. The suitable elutant selected from batch regeneration experiments (25% isopropyl alcohol) was used to desorb the loaded activated carbon in each cycle.

Adsorptive Immobilization of Acetylcholine Esterase on Octadecyl Substituted Porous Silica: Optical Bio-analysis of Carbaryl

  • Norouzy, Amir;Habibi-Rezaei, Mehran;Qujeq, Durdi;Vatani, Maryam;Badiei, Alireza
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.157-161
    • /
    • 2010
  • A sensory element against carbaryl, as a widely used pesticide was prepared based on adsorbed acetylcholine esterase (AChE) from Torpedo california. Octadecyl was substituted on macro-porous silica, confirmed by infra-red (IR) spectroscopy and quantitatively estimated through thermo-gravimetric analysis (TGA). Immobilization of the enzyme was achieved by adsorption on this support. Activity of the immobilization product was measured as a function of the loaded enzyme concentration, and maximum binding capacity of the support was estimated to be 43.18 nmol.mg-1. The immobilized preparations were stable for more than two months at storage conditions and showed consistency in continuous operations. Possible application of the immobilized AChE for quantitative analysis of carbaryl is proposed in this study.