• Title/Summary/Keyword: continuation power flow

Search Result 30, Processing Time 0.04 seconds

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

Improved Direct Method for Calculating the Closest Voltage Collapse Point and Voltage Stability Enhancement by Generation Redispatch (최단 전압붕괴점 계산을 위한 개선된 직접법과 재급전에 의한 전압안정도 향상)

  • Nam, Hae-Kon;Song, Chung-Gi;Kim, Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.958-964
    • /
    • 1999
  • The distance in load parameter space to the closest saddle node bifurcation (CSNB) point provides the worst case power margin to voltage instability and the left eigenvector at CSNB identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents an improved direct method for computing CSNB: the order of nonlinear systems equations is reduced to about twice of the size of load flow equations in contrast to about three-times in Dobson's direct method; the initial guess for the direct method is computed efficiently and robustly by combined use of continuation power flow, a pair of multiple load flow solution with Lagrange interpolation. It is also shown that voltage stability may be enhanced significantly with shift of generations in the direction of the left eigenvector at CSNB.

  • PDF

The development for the determining large-scale steady-state wind penetration using the continuation-power flow (연속조류계산법을 이용한 대규모 풍력 발전의 정적계통 투입량 결정 알고리즘 개발)

  • Kim, Ji-Hun;Moon, Ji-Hye;Lee, Hwan-Ik;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.234-235
    • /
    • 2011
  • 계통에 대규모의 풍력발전의 투입양이 증가함에 따라 실효치 기반의 해석이 필요하다. 계통 내에 무효전력 불균형에 의한 풍력 발전의 한계량을 결정하기 위하여 연속조류법을 이용한 한계량 선정 알고리즘을 수립하였다. 이를 위하여 풍력발전단지를 등가화하고, 타입에 따른 풍력발전기의 정적 모델을 수립하였다.

  • PDF

Enhancement Power System Transfer Capability Program (PSTCP) To Calculate Total Transfer Capability in Power Systems (전력계통의 TTC(Total Transfer Capability) 산정을 위한 수송능력평가 프로그램 향상)

  • Kim, Sang-Ahm;Lee, Byung-Jun;Song, Kil-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper presents a sequential framework that calculates the total transfer capabilities of power transmission systems. The proposed algorithm enhances the Power System Transfer Capability Program (PSTCP) in conjunction with the Continuation Power Flow(CPF) that is used for steady-state voltage stability analysis and modified Arnoldi-Chebyshev method that calculates rightmost eigenvalues for small signal stability analysis. The proposed algorithm is applied to IEEE 39-bus test system to calculate TTC.

  • PDF

Centralized Control Algorithm for Power System Performance using FACTS Devices in the Korean Power System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Chang, Byung-Hoon;Myung, Ro-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • This paper presents a centralized control algorithm for power system performance in the Korean power system using Flexible AC Transmission Systems (FACTS) devices. The algorithm is applied to the Korean power system throughout the metropolitan area in order to alleviate inherent stability problems, especially concerns with voltage stability. Generally, control strategies are divided into local and centralized control. This paper is concerned with a centralized control strategy in terms of the global system. In this research, input data of the proposed algorithm and network data are obtained from the SCADA/EMS system. Using the full system model, the centralized controller monitors the system condition and decides the operating point according to the control objectives that are, in turn, dependent on system conditions. To overcome voltage collapse problems, load-shedding is currently applied in the Korean power system. In this study, the application of the coordination between FACTS and switch capacitor (SC) can restore the solvability without load shedding or guarantee the FV margin when the margin is insufficient. Optimal Power Flow (OPF) algorithm, for which the objective function is loss minimization, is used in a stable case. The results illustrate examples of the proposed algorithm using SCADA/EMS data of the Korean power system in 2007.

Evaluation of Load Supplying Capability Considering Voltage Constraint in Composite Power System (전압제약을 고려한 전력계통의 최대전력수량 산정)

  • Jeong, M.H.;NamKung, J.Y.;Oh, K.H.;Lee, B.J.;Song, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1067-1070
    • /
    • 1997
  • This paper presents an algorithm that evaluates load supplying capability(LSC) considering voltage constraint in composite power systems. To evaluate the LSC considering the voltage constraint, we apply tangent vector approach using an enhanced power flow method based on continuation algorithm. The validity and effectiveness of the proposed method is confirmed through the simulation of a model system.

  • PDF

A Study on Determination of Pg Limitation in Jeju System Using Continuation Power Flow(CPF) (제주지역 발전제약 완화방안과 CPF 해석)

  • Joo, Joon-Young;Bae, Joo-Cheon;Kang, Sang-Gyun;Lee, Byoung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.441-442
    • /
    • 2007
  • 제주계통은 지속적인 부하증가를 고려하여 대용량의 발전기를 설치하였다. 제주계통에서 대용량의 발전기가 탈락하는 경우 탈락되는 유효전력량 만큼 HVDC에서 추가적으로 전송하게 된다. 전류형 HVDC는 유효전력을 전송시키기 위해서 계통에서 무효전력을 공급받아야 한다. 탈락하는 발전기의 유효전력 발전량이 많으면 많을수록 계통에서 공급받아야 하는 무효전력량이 많아진다. 실질적으로 상정고장 검토시 제주도의 대용량 발전기의 탈락은 제주 계통의 안정도 유지에 심각한 문제를 초래하므로 발전기의 유효전력 출력은 신뢰도 유지를 위해서 제한이 필요하다. 본 논문에서는 제한된 발전기 최대 유효전력 출력값을 계산하기 위한 새로운 해석 방법과 전력시장운영규칙의 기준전압을 벗어나지 않는 범위 내에서 기존에 설치되어 있는 전압보상장치를 투입함으로써 상대적으로 값이 싼 대용량 발전기의 발전량을 향상시키는 방안에 대해서 논의한다.

  • PDF

Performance characteristic investigation and stay vane effect on Ns100 inline francis turbine

  • Singh, Patrick Mark;Chen, Zhenmu;Hwang, Yeong-Cheol;Kang, Min-Gu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.397-402
    • /
    • 2016
  • This study presents the performance characteristics of a small Francis turbine with an inline casing and is a continuation of a previous study. A new runner design has been implemented using the previous facility. The specific speed of the new runner has been modified from $N_s$ 80 to $N_s$ $100m-kW-min^{-1}$. This turbine can be installed in a city water supply system. To dissipate excess pressures in the water line system an inline-turbine can be used instead of an inline-pressure reducing valve. Thus, some of the energy can be recovered by utilizing the pressure difference. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of a common spiral casing. As a characteristic of inline casing, the flow accesses to the runner are in the radial direction, showing low efficiency. The installation of vanes improves the internal flow and positively affects the output power. In contrast to the previous study, the new runner reduces the effect of the stay vanes by maintaining a higher efficiency.

Application of Optimization Technique for Available Transfer Capability Caculation (가용송전용량 계산을 위한 최적화기법 응용)

  • Kim Kyu Ho;Shin Dong Joon;Kim Jin O;Kim Tae Kyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.183-185
    • /
    • 2004
  • This paper deals with an application of optimization technique for available transfer capability(ATC) calculation. ATC is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading. Sequential quadratic programming(SQP) is used to calculate the ATC problem with state-steady security constraints. The proposed method is applied to 10 machines 39 buses model systems. The results are discussed and compared to those obtained by continuation power flow(CPF).

  • PDF

A Study on Determination of Optimal Reclosing Guideline on Distribution Lines (배전선로 재폐로 최적 기준 산정에 관한 연구)

  • Cho, Jae-Hun;Lee, Sun-Jung;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.417-422
    • /
    • 2022
  • It is always desirable that the continuation of power flow through the lines should not be interrupted for a long time. The optimized guideline of reclosers on distribution lines is known to improve the reliability of power systems, the protection functions on distribution systems heavily rely on the number and placement of such reclosers. This study reviewed the effect of using protection settings methodology with the number of reclosing operations to reduce the damage sustained during faults on distribution networks. The aim of the study is to determine the number of reclosing operations and fault current conditions based on simulation data of PSCAD/EMTDC for standard distribution networks. It is found that the determination of the number of operations on reclosers, which are the protection function of feeders, helped to optimize the operation and reliability of distribution networks.