The purposes of this study were to identify the misconceptions that students have on the magma and plate tectonics and to present the implications in developing textbooks as well as related curriculum of high school textbooks. Data were collected through questionnaire, consisting of some questions, short essays, and descriptive drawings, developed by the research team. A total of 140 high school students(9th graders) responded to those questionnaires and were interviewed for further information. It was reported that participants displayed various misconceptions related to magma and plate tectonics. The identified misconceptions are as follows: For the definition of magma, the 31% of participants misunderstood magma as lava. In respect to the generative mechanism of magma at subduction zone, over 90% of students responded that it is generated by frictional heat. The source of misconceptions were identified as a result from textbooks and related reference-books. For the concept of plates, 87% of students conceived 'crust or a lower part of the plates' as 'plates'. Most participants hold the right concept of oceanic ridge, whereas, 66% of them considered 'rift valley' as either 'divergence of continental plates' or 'converging boundary'. 63% of them defined 'collision boundary of continental plate' as either 'subduction zone' or 'diverging boundary'. For the definitions of the trench and Benioff zone, 86% of students responded them as the place of subduction or differing density between two converging plates. The students' misconceptions were resulted from the errors and insufficient explanation, inappropriate figures, and data presented in textbooks, reference-books, lecture, and web sites. The results of this study are implied to contribute the improvement of students' misconceptions.
Orbicular granite gneisses occur as a xenolith within two-mica leucogranites, together with early Paleoproterozoic metasedimentary xenoliths, in Wangjeong-ri, Muju area. The whole-rock chemistries and SHRIMP zircon Pb/U ages of the leucogranites indicate that they are S-type granitoids formed in the continental tectonic setting at $1875{\pm}75$ Ma. The SHRIMP age of monazites from the orbicular granite gneiss gives $1867{\pm}4$ Ma as a metamorphic age which is similar to the intrusion age of the two-mica leucogranite within the error range. The similar ages between zircons and monazites represent that the orbicular granite gneisses formed by metamorphism during the intrusion of the two-mica leucogranite; the metasedimetary xenoliths which sank within the parent magma of leucogranites were metamorphosed into orbicular granite gneisses by thermal metamorphism ($650-740^{\circ}C$, 4-6.5 kbar) due to the heat supplied from surrounding magma. During the thermal metamorphism, the core of orbicular granite gneiss mainly consisting of cordierite formed, and in some orbicular granitic gneisses, the leucocratic melt formed by melting of quartz and plagioclase in the core, squeezed out from core and crystallized around the core forming outer rim. The hydrothermal fluid at the late stage of magma differentiation penetrated into the orbicular granite gneisses resulting pinitization of cordierite into chlorite and sericite. As Muju orbicula granite gneiss was formed from sedimentary rocks, it is more appropriate to be called Muju orbicula granitic gneiss.
There were three cycles of igneous activities from the late Paleozoic to early Cenozoic; Permian to Triassic, Jurassic, and Cretaceous to Paleogene. After the beginning of each igneous activity cycle, igneous activity became more frequent until its climax. It is noteworthy that A-type magmatisms are reported from near the ends of the all three igneous activity cycles. In addition, adakitic magmatisms occurred at the beginning of both the Permian-Triassic and the Cretaceous-Paleogene cycles. Most of the igneous activities during the late Paleozoic to early Cenozoic period were subduction-related. Therefore, transitions among beginning, proceeding, and closing of the igneous activity cycles would be intimately related with changes in directions of plate movements. In this context, I suggest following hypotheses. The closing of the Permian-Triassic igneous cycle was possibly a consequence of radical adjustment of plate motion occurred due to continental collision between north and south China blocks. Considering that no appreciable tectonic activities were recognized from the east Asian continent at the closing of the Jurassic igneous cycle, it seems that one of the strong events related with Gondwanaland-breakup and subsequent birth of the new oceans, which might cause sudden adjustments of plate motions. The closing of the Cretaceous-Paleogene igneous cycle seems to be caused as a consequence of the collision between India and Asia continents. Meanwhile, adakitic igneous bodies emplaced at the beginnings of the Permian-Triassic and Cretaceous-Paleogene cycles could be products of slab-melting during the early stages of the subduction.
In the Hapcheon area, hypersthene-bearing monzonite (mangerite) and syenite are recognized. The main minerals of syenite are alkali feldspar, plagioclase, amphibole, biotite, and quartz. Anhedral hornblende and biotite are interstitial between feldspar and quartz, indicating that the hydrous minerals were crystallized later on. Based on petrochemical studies of major elements, syenite is alkaline series, metaluminous, and I-type. The variation patterns in the trace and rare earth elements of mangerite and syenite show the features of subduction-related igneous rock such as depletion of HFSE, relative enrichment in LILE to LREE, and negative Nb-P-Ti anomalies. Based on the experimental data and petrographic characteristics of the syenite, Hapcheon syenitic magma is considered to be formed by partial melting in a dry system. SHRIMP U-Pb zircon data yield the Triassic age as $227.4{\pm}1.4Ma$ in mangerite, $215.3{\pm}1.2Ma$ in syenite, and $217.9{\pm}2.6Ma$ in coarse-grained syenite, respectively. The mangerite age is similar to those of post-collisional plutonic rocks in Hongseong (226~233 Ma), Yangpyeong (227~231 Ma), and Odaesan (231~234 Ma) areas in the Gyeonggi Massif. Syenites were intruded after about 10 Ma. The features seen in the mangereite and syenite rocks can be explained by models such as the continental collision and slab break-off and the lithosphere thinning and asthenosphere upwelling model.
A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine deep geo-electrical structures of the Korean peninsula. In this study, five additive GDS sites acquired in south-eastern area of the Korea were integrated into twelve previous GDS results. In addition, 3-D MT modeling considering the surrounding seas of the Korean peninsula was performed to evaluate sea effect at each GDS site quantitatively. As a result, Observed real induction arrows was not explained by solely sea effect, two conductive structures that are able to explain differences between observed and calculated induction arrows, was suggested. The first conductive structure is the Imjingang Belt, which is thought as a extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at YIN and ICHN sites. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling generated in back-basin region. The effects of the HCL are also confirmed at KZU, KMT101, 107 sites, in the south-eastern of the Korean peninsula.
Wee Soo Meen;Park Se Mi;Choi Seon Cyu;Ryu In Chang
Economic and Environmental Geology
/
v.38
no.2
s.171
/
pp.113-127
/
2005
Cretaceous intrusive and extrusive rocks are widely distributed in the southwestern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the western proto-Pacific plate beneath the north-eastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that the all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. Higher values of $Fe_2O_3/FeO$ of the granitic rocks in the western area suggest that the granitoids had been solidified under highly oxidizing environment. The granitic bodies in the eastern area also show higher contents of Li, Ni, Co, Sr, Cr, Sc and lower Rb and Nb compared to the those of the western area. Chondrite normalized REE patterns show generally enriched LREE and strong negative Eu anomalies in the western wet while slight to flat Eu anomalies in the east-ern area. The REE and $(La/Lu)_{CN}$ of the granites are $60{\~}499ppm$ and $8.9{\~}66$ correspond to the range of the continental margin granite. On the ANK vs. ACNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type, VAG and syn-collision granite. Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of proto-Pacific plate.
Geochemical characteristics of the Early Cretaceous igneous rocks from eastern China and the Gyeongsang Basin, Korean Peninsula has been summarized. They have wide range of lithological variation with extrusive picrite-basalt-andesite-trachyte-rhyolite and lamprophyre, and intrusive gabbro-diorite-monzonite-syenite-granite and diabase in eastern China, mostly belonging to the high-K calc-alkaline or shoshonitic series. The volcanic rocks intercalated with the Hayang Group sedimentary assemblages in the Gyeongsang basin are high-K to shoshonitic basaltic trachyandesites. The Early Cretaceous basaltic rocks studied mostly fall within the field of within-plate basalts on the Zr/Y-Zr and Nb-Zr-Y tectonic discrimination diagrams. On a Sr-Nd isotope correlation diagram, basaltic rocks from the North China block (NCB) and the continent-continent collision zone (CZ) between the North and South China blocks plot into the enriched lower right quadrant along the extension of the mantle array. The initial $^{87}Sr/^{86}Sr$ ratios of basaltic rocks from the South China block (SCB) are indistinguishable from those of the NCB and CZ basaltic rocks, but their ${\varepsilon}_{Nd}$ (t) values are relatively more elevated, plotting in right side of the mantle array. Basaltic rocks from the NCB and CZ are characterized by low $^{206}Pb/^{204}Pb(t)$ ratios, lying to the left of the Geochron on the $^{207}Pb/^{204}Pb(t)$ vs. $^{206}Pb/^{204}Pb(t)$ correlation. Meanwhile, the SCB basaltic rocks have relatively radiogenic Pb isotopic compositions compared with those of the NCB and CZ basaltic rocks. Basaltic rocks from the Hayang Group plot within the field of the NCB basaltic rocks in Sr-Nd and Pb-Pb isotope spaces. Metasomatically enriched subcontinental lithospheric mantle (SCLM) is likely to have been the dominant source for the early Cretaceous magmatism. Asthenospheric upwelling under an early Cretaceous extensional tectonic setting in eastern China and the Korean Peninsula might be a heat source for melting of the enriched SCLM. Metasomatic agents proposed include partial melts of lower continental crust delaminated and foundered into the mantle or subducted Yangtze continental crust, or fluid/melt derived from the subducted paleo-Pacific plate.
Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.
We present data from the Mesozoic Keumkang, Palbong, and Baekhwa granites in Garorim Bay, in the southwestern part of the Gyeonggi massif, South Korea. Using major and trace element concentrations, Sr-Nd-Pb isotopic compositions, and sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages, we aim to constrain the petrogenesis of the granites and explain their origin within a broader regional geological context. SHRIMP U-Pb zircon ages of $232.8{\pm}3.2$, $175.9{\pm}1.2$, and $176.8{\pm}9.8$ Ma were obtained from the Keumkang, Palbong and Baekhwa granites, respectively. The Late Triassic Keumkang granites belong to the shoshonite series and show an overall enrichment in large ion lithophile elements (LILE), a depletion in high field strength elements (HFSE) relative to primitive mantle, compared with neighboring elements in the primitive mantle-normalized incompatible trace element diagram with notable high Ba and Sr contents, and negligible Eu anomalies. The Keumkang granites are typified by highly radiogenic Sr and unradiogenic Nd and Pb isotopic compositions: $(^{87}Sr/^{86}Sr)_i=0.70931-0.70959$, $(^{143}Nd/^{144}Nd)_i=0.511472-0.511484$ [$({\varepsilon}_{Nd})_i=-17.0$ to -16.7], and $(^{206}Pb/^{204}Pb)=17.26-17.27$. The Middle Jurassic Palbong and Baekhwa granites belong to the medium- to high-K calc-alkaline series, and show LILE enrichment and HFSE depletion similar to the Keumkang granites, but exhibit significant negative anomalies in Ba, Sr, and Eu. Furthermore, they have elevated Y and Yb contents at any given $SiO_2$ content compared with other Jurassic granitoids from the Gyeonggi massif. The Palbong and Baekhwa granites have slightly less radiogenic Sr and more radiogenic Nd and Pb isotopic compositions [$(^{87}Sr/^{86}Sr)_i=0.70396-0.70908$, $(^{143}Nd/^{144}Nd)_i=0.511622-0.511660$, $({\varepsilon}_{Nd})_i=-15.4$ to -14.7, $(^{206}Pb/^{204}Pb)=17.56-17.76$] relative to the Keumkang granites. The Keumkang granites are considered to have formed in a post-collisional environment following the Permo-Triassic Songrim orogeny that records continent-continent collision between the North and South China blocks, and may have formed by fractional crystallization of metasomatized lithospheric mantle-derived mafic melts. The Palbong and Baekhwa granites may have been produced from a gabbroic assemblage at pressures of less than ~15 kbar, associated with subduction of the paleo-Pacific (Izanagi) plate at the Eurasian continental margin. Elevated ${\varepsilon}_{Nd}(t)$ values in the granitoids from the southwestern part of the Gyeonggi massif relative to those of the central and northern parts, together with the comparatively shallow depth of origin, imply the presence of an exotic block in the Korean lithosphere.
The Precambrian Hongjesa granite is lithologically zoned from biotite granite in central part to biotite-muscovite granite towards the margin. The X_{Fe}$ (=Fe/(Fe+Mg)) value and the aluminum saturation index of biotite systematically vary as a function of mineral assemblage, and are positively related with those of bulk rock. This relationship as well as the lithological zoning are attributed to the fractional crystallization of the Hongjesa granitic magma. The trace element data corroborate that biotite-muscovite granite is more fractionated than biotite granite. The evolution of the Hongjesa granite is elucidated by using the AFM liquidus topology, where A=$Al_2O_3-CaO-Na_2O-K_2O$; F=FeO+MnO; and M=MgO. At an early magmatic stage where biotite is the only ferromagnesian mineral to crystallize, the X_{Fe}$ value and the alumina content of granitic magma continuously increase.. Muscovite subsequently crystallizes with biotite along the biotitemuscovite cotectic curve where biotite-muscovite granite forms. Local enrichments in Mn and B further crystallize garnet and tourmaline, respectively. The unique zonal pattern characterized by the occurrence of the evolved biotite-muscovite granite at the margin may be accounted for by the passive stoping during the emplacement of the Hongjesa granite. This emplacement may have occurred in continental collision environment, according to the tectonic discrimination diagram using major element chemistry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.