• Title/Summary/Keyword: content scanning

Search Result 1,035, Processing Time 0.026 seconds

Glass Transition Temperature of Honey Using Modulated Differential Scanning Calorimetry (MDSC): Effect of Moisture Content

  • Kim, Mi-Jung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.356-359
    • /
    • 2010
  • Glass transition phenomena in nine Korean pure honeys (moisture content 18.3~20.1%) and honey-water mixtures by different water contents (0, 2, 5, and 10% w/w) were investigated with modulated different scanning calorimetry (MDSC). The total, reversing, and non-reversing heat flows were quantified during heating using MDSC. Glass transition was observed from reversing heat flow separated from the total heat flow. The glass transition temperatures ($T_g$) of pure honeys, which are in the range of $-42.7^{\circ}C$ to $-50.0^{\circ}C$, varied a lot with low determination coefficient ($R^2$=0.63), whereas those of honey-water mixtures decreased with a decrease in honey content. The $T_g$ values were also more significantly different among honey-water mixtures when compared to pure honeys, indicating that in the honey-water mixture system the $T_g$ values appear to be greatly dependent on moisture content. The measured heat capacity change (${\Delta}C_p$) was not influenced by moisture content.

Effects of Ultrasonic Waves Scanning on the Quality of Fried Chicken Breast (튀김 닭고기 가슴살의 품질에 영향을 미치는 초음파 주사 효과)

  • Jung In-Chul;Moon Yoon-Hee;Park Kyung-Sook;Youn Dong-Hwa
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.2
    • /
    • pp.192-198
    • /
    • 2006
  • This study was carried out to investigate the effect of ultrasonic wave scanning on the quality of fried chicken breast. The ultrasonic wave scanning time was 0(US-0), 3(US-3), 7(US-7) and 10(US-10) minutes, no respective comparison here. The moisture of raw breast was higher than that of flied chicken, while the crude protein, fat and ash of fried chicken were higher than those of raw breast(p<0.05). The moisture content was influenced by the ultrasonic waves scanning, but the crude protein, fat and ash were not. The $L^*$(lightness) and $b^*$(yellowness) values of fried chicken were higher than those of raw breast but the $a^*$(redness) value of raw breast was higher than that of fried chicken. The $L^*$ value was lowest in US-0, while the $a^*$ value was not significantly different and the $b^*$ value was lowest in US-7 among the fried chicken samples(p<0.05). The fried chicken was not influenced by the ultrasonic wave scanning, indicating that the longer scanning time increased the water holding capacity. The pH ranged from 6.54 to 6.93, and the calorie of fried was higher than that of raw breast, but was not influenced by the ultrasonic wave scanning time. The VBN content ranged from 8.73 to 12.3 mg%. The TBARS value of raw breast was lower than that of flied chicken and was not influenced by the ultrasonic wave scanning time. Total amino acid was highest in raw breast and lowest in US-3(p<0.05). The taste, texture and juiciness were superior with increasing scanning time, but flavor and Palatability were not significantly different among the fried chicken samples(p<0.05).

  • PDF

Preparation of Nanocapsules Containing Phase Change Materials by Miniemulsion Polymerization

  • Oh, Keun Jin;Kim, Dae-Su;Lee, Jae Heung;Choi, Kil-Yeong;Lee, Changjin
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Polystyrene nanocapsules containing octadecane as a core material were prepared by miniemulsion polymerization. The morphology and size of the nanocapsules were measured with varying the surfactant concentration, content of initiator, core/shell ratio and content of comonomer. The morphologies of the prepared nanoparticles were examined by a scanning electron microscope, a transmission electron microscope and the core material was confirmed by a differential scanning calorimeter. The particles below 70 nm in diameter were formed at a high surfactant concentration. The size of the nanoparticles was not significantly affected by the initiator content. With increasing the core/shell ratio and polar comonomer content, the particle size and its distribution were increased.

  • PDF

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method

  • Niyaifar, Mohammad;Mohammadpour, Hory;Rodriguez, Anselmo F.R.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.246-251
    • /
    • 2015
  • This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.

Synthesis and characterization of starch$^Na+$-montmorillonite clay nanocomposites

  • Na, Seong-Ki;Park, Jong-Shin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.67-68
    • /
    • 2003
  • Native corn starch and montmorillonite caly nanocomposites were prepared using the glycerol as the plasticizer. These were characterized by mechanical analysis, X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The tensile strength increased with the clay content to a maximum point and then decreased due to gapping between the two phases. Dispersion of the layered silicate within the starch was verified using X-ray diffraction pattern. Examination of these materials by scanning electron showed that intercalates have good wetting to the starch surface.

  • PDF

Research on the Application of Digital Human Production Based on Photoscan Realistic Head 3D Scanning and Unreal Engine MetaHuman Technology in the Metaverse

  • Pan, Yang;Kim, KiHong;Lee, JuneSok;Sang, YuanZi;Cheon, JiIn
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.102-118
    • /
    • 2022
  • With the development of digital content software production technology and the technological progress of related hardware, the social status quo in the post-epidemic era, the popularization and application of 5G networks, the market and consumers' increasing demand for digital content products, artificial intelligence, virtual digital human, virtual Idols, virtual live, self-media content and metaverse-related content industries are all developing rapidly. Virtual idols, virtual digital human, etc. are not only accelerating innovation in production technology. The economic cost, technical difficulty and time requirements of production are also greatly reduced. With the arrival and development of the Metaverse, the author believes that the content industry with virtual digital humans as the core will continue to develop in the direction of refinement, specialization, facilitation and customization. In this article, we will analyze and study the production of virtual digital human based on Photoscan technology and Unreal Engine 5 Metahuman software, and discuss the application status and future development of related content.

Convergence Modeling and Reproduction of a Bigyeokjincheolloe (Bomb Shell) Based on Three-dimensional Scanning and 𝛾-ray Radiography

  • Kim, Da Sol;Jo, Young Hoon;Huh, Il Kwon;Byun, Sung Moon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • The Bigyeokjincheolloe (bomb shell), a scientific cultural heritage, has outstanding historical value for sustaining a gunpowder weapon of Joseon. In this study, the bomb shell was modeled through three-dimensional (3D) scanning centered on the external shape and 𝛾-ray radiography-based on the internal shape. In particular, to improve the contrast in the radiographic image, optimization and image processing were performed. After these processes, the thickness of the inner wall (2.5 cm on average) and the positions of the three mold chaplets were clearly revealed. For exhibition purposes, the 3D model of the bomb shell was output to a 3D printer and the output was rendered realistic by coloring. In addition, the internal functional elements, such as Mokgok, fuse, mud, gunpowder, and caltrops, were reproduced through handwork. The results will contribute to the study of digital heritages in two ways. First, the internal and external shapes of the bomb shell were modeled by fusing two different technologies, namely, 3D scanning and 𝛾-ray radiography. Second, the internal shape of the bomb shell was constructed from the original form data and the reproduction was utilized for museum exhibitions. The developed modeling approach will greatly expand the scope of museum exhibitions, from those centered on historical content to those centered on scientific content.

Analysis of Ceramics Using Scanning Electron Microscopy (주사전자현미경을 활용한 세라믹의 분석)

  • Lee, Sujeong
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • A ceramic is used as a key material in various fields. Accordingly, the use of scanning electron microscopy is increased for the purpose of evaluating the reliability and defects of advanced ceramic materials. The scanning electron microscope is developed to overcome the limitations of optical microscopy and uses accelerated electrons for imaging. Various signals such as SE, BSE and characteristic X-rays provide useful information about the surface microstructure of specimens and, the content and distribution of chemical components. The development of electron guns, such as FEG, and the improved lens system combined with the advanced in-lens detectors and STEM-in-SEM system have expanded the applications of SEM. Automated SEM-EDS analysis also greatly increases the amount of data, enabling more statistically reliable results. In addition, X-ray CT, XRF, and WDS, which are installed in scanning electron microscope, have transformed SEM a more versatile analytical equipment. The performance and specifications of the scanning electron microscope to evaluate ceramics were reviewed and the selection criteria for SEM analysis were described.

Effect of Cu Content and Annealing Temperature on the Shape Memory Effect of NiTi-based Alloy (구리함량과 어닐링 온도가 NiTi 합금의 형상기억효과에 미치는 영향)

  • Hyeok-Jin Yang;Hyeong Ju Mun;Ye-Seul Cho;Jun-Hong Park;Hyun-Jun Youn;In-Chul Choi;Myung-Hoon Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • The effects of annealing heat treatment and the addition of Cu element on the shape memory effect of the NiTi-based alloy were investigated by analyzing differential scanning calorimeter results and characterizing recovery rate through 3D scanning after Vickers hardness test. Through 3D scanning of impressions after Vickers hardness test, the strain recovery rates for specimens without annealing treatment and annealed specimens at 400, 450, and 500℃ were measured as 45.96%, 46.76%, 52.37%, and 43.57%, respectively. This is because as the annealing temperature increases, both B19' and NiTi2 phases, which can impede martensitic transformation, are incorporated within the NiTi matrix. Particularly, additional phase transformation from R-phase to B19' observed in specimens annealed at 400 and 450℃ significantly contributes to the improvement in strain recovery rates. Additionally, the results regarding the Cu element content indicate that when the total content of Ni and Cu is below 49.6 at.%, the precipitation of fine B19' and NiTi2 phases within the matrix can greatly influence the transformation enthalpy and temperature range, resulting in relatively lower strain recovery rates in NiTi alloys with a small amount of Cu element produced in this study.