• 제목/요약/키워드: content based image retrieval(CBIR)

검색결과 87건 처리시간 0.027초

3차 칼라 오브젝트 관계에 의한 내용 기반 영상 검색 (Content-Based Image Retrieval using 3rd Order Color Object Relation)

  • 권희용;최재우;이인행;조동섭;황희융
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.500-502
    • /
    • 1998
  • 최근 정보 사회에서 중요한 기술로 자리잡은 멀티미디어 정보 검색에 대한 다양한연구가 진행 중에 있다. 본 논문은 정지 화상에 대한 CBIR(Content-Based Image Retrieval)방법 중 칼라 정보를 이용한 방법에서 공간 정보를 충분하게 표현할 수 있는 알고리즘을 제안한다. 일반적으로 칼라 정보를 이용한 CBIR에서는 공간정보를 표현하기 위하여 인위적으로 영상을 여러 개로 분할하는 방법이나 영상의 히스토그램 내에서 영상의 위치 정보를 이용하는 방법 등이 연구되었다. 본 논문에서는 기존의 방법을 칼라 오브젝트의 추출 방법에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소, 확대)에 탁월한 성능을 보이는 3차 칼라 오브젝트 관계를 이용한 방법을 소개한다. 제안된 알고리즘은 주어진 영상으로부터 양자화 된 24개의 버킷(bucket)을 생성해서 각 버킷 내의 칼라에 대한 색의 표준 편차로 색의 분산 정도를 나타내고, 빈도수가 높은 3개 버킷의 평균 칼라 위치를 계산해서 그들의 상호 각도를 추출하여 영상의 특징 벡터로 사용하였다. 실험결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을 수 있었으며, 계산량도 적어 효율적임을 보여 주었다.

  • PDF

3차 칼라 오브젝트 관계에 의한 내용 기반 영상 검색 (Content-Based Image Retrieval using 3rd Order Color Object Relation)

  • 최재우;권희용;황희융
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2000년도 추계학술대회
    • /
    • pp.208-213
    • /
    • 2000
  • 본 논문은 정지 화상에 대한 CBIR(Content-Based Image Retrieval)방법 중 칼라 특성을 이용해서 영상 내 공간 정보를 충분하게 표현할 수 있는 알고리즘을 제안한다. 일반적으로 칼라 특성을 이용한 CBIR은 영상 내 공간정보를 충분하게 표현하지 못하는 단점을 지니고 있다. 이에 기존 논문에서는 인위적으로 영상을 여러 개로 분할하는 방법 등으로 공간정보를 표현하고자 하였지만 특징벡터의 수가 급격히 늘어남에 따라 검색효율이 저하된다는 단점을 가지고있다. 본 논문에서는 기존의 방법을 칼라 오브젝트의 추출 방법에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소, 확대)에 탁월한 성능을 보이는 칼라 오브젝트의 3차 관계를 이용한 방법을 소개한다. 주어진 영상으로부터 양자화된 24개의 버킷을 생성해서 각 버킷 내의 칼라에 대한 색의 표준 편차로 색의 분산 정도틀 나타내고, 히스토그램의 빈도수가 높은 세 개 버킷의 평균 칼라 위치를 계산해서 그들의 상호 각도를 추출하여 영상의 특징 벡터로 사용한을 제안하였다. 실험결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을 수 있었으며, 계산량도 적어 효율적임을 보여 주었다.

RBF 신경망을 이용한 내용 기반 영상 검색 (Content-Based Image Retrieval using RBF Neural Network)

  • 이형구;유석인
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.145-155
    • /
    • 2002
  • 내용 기반 영상 검색에서 대부분의 기존 방법들은 서로 다른 특징들 사이의 선형 관계를 가정하고 또 사용자가 직접 각 특징의 가중치를 설정하도록 한다 허나 특징들 사이의 관계가 선형적으로 가정된 하에서는 고차원의 개념과 인간의 지각 주관성을 충분히 표현할 수 없는 단점이 있다. 본 논문에서는 신경망에 기반한 영상 검색 모델이 제안된다. 이는 RBFN을 이용한 내용 기반 영상 검색 기법과 인간컴퓨터 상호작용의 접근 방법을 기반으로 구축되었다. RBFN을 이용하여 특징들 사이의 비선형적 관계를 추출해낼 수 있고 사용자가 처음에 질의 영상을 선택하고 관련성 피드백을 통하여 점차적으로 목표 영상을 찾아나가도록 함으로써 영상의 비교를 더 정확하게 할 수 있다. 실험은 145개의 클래스로 구분되며 1,015개의 영상을 포함하는 데이타베이스를 사용하여 재생과 정도를 계산하였다. 실험 결과는 제안된 방법의 재생과 정도가 각각 93.45%과 80.61%로서, 기존의 선형 결합 방법이나 순위 기반 방법 그리고 역전파 알고리즘에 기반한 방법보다 더 뛰어난 검색 성능을 지님을 보여준다.

색상과 형태를 이용한 내용 기반 영상 검색 (Content-based Image Retrieval Using Color and Shape)

  • 하정요;최미영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권1호
    • /
    • pp.117-124
    • /
    • 2008
  • 본 논문에서는 색상정보와 형태정보를 이용한 내용기반 영상 검색방법을 제안한다. 이미지의 한 가지 특징만을 고려한 내용 기반 이미지 검색은 두 가지 이상의 특징 정보를 이용했을 때와 비교하여 정확도가 떨어져 성능을 저하시킬 수 있다. 따라서 여러 검색 시스템에서는 색상이나 형태, 질감 등과 같은 이미지의 다양한 특징들을 혼합하여 검색에 이용하고 있다. 본 연구는 각 영상의 Hue값에 대한 색상정보와 CSS(Curvature Scale Space)를 이용한 형태정보를 사용한다. 각 영상들의 특징 정보와 데이터베이스에 저장된 영상들의 특징 정보들을 비교하여 유사도 순위에 따라 후보영상들이 검색된다. 실험 결과 색상정보나 형태정보 한가지의 특징만을 사용한 경우 보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었다.

  • PDF

이기종 CBIR 시스템을 위한 FEMAL (FEMAL for Heterogeneous CBIR System)

  • 김현종;박영배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.853-867
    • /
    • 2005
  • 지금까지 많은 내용 기반 이미지 검색 방법들이 제안되고 있다. 이 시스템들은 각 시스템마다 다른 이미지 데이타를 이용하고, 다른 특징 추출방법에 따라 다른 특징 추출 데이타를 생성하므로, 각 시스템의 검색 성능을 비교 평가할 수가 없다 특히 웹상에서, 동일한 이미지 데이타를 서로 다른 사이트에 있는 내용 기반 이미지 검색 시스템에 적용하여 검색 성능을 비교 평가할 수 없는 문제점이 있다. 이와 같은 문제점을 해결하기 위해서, 각각의 특정한 검색시스템에서 생성된 특징 추출 데이타를 웹상의 다른 검색 시스템에서 인식할 수 있도록, XML 기반의 FEMAL을 제안한다. FEMAL을 이용한 실험에서, 특징 추출 데이타를 서로 통신하고 통합이 가능함을 보이고, 검색 성능의 비교 평가가 가능함을 보인다.

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

칼라와 에지 정보를 이용한 내용기반 영상 검색 (Contents-based Image Retrieval Using Color & Edge Information)

  • 박동원;안성옥
    • 컴퓨터교육학회논문지
    • /
    • 제8권1호
    • /
    • pp.81-91
    • /
    • 2005
  • 본 논문에서는 칼라와 에지 정보를 이용한 내용기반 영상검색 기법을 제안하였다. 기존의 RGB 공간 정보를 이용하기 보다는, 시각적 인식에 보다 중점을 둔 HSI칼라 공간에서 고찰하였다. 비슷한 류의 색을 대표색으로 통합 표현하여, 개선된 칼라 정보 이용법을 본 연구에서 제안하였다. 또한 칼라 정보만을 이용했을 때의 시스템 성능상의 결점을 보완하기 위하여, 효율적인 에지 디텍션 기법을 함께 사용하였다. 칼라와 에지 기법을 통합함에 있어서, 각각의 기법에 적절한 가중치를 배분함으로써 시스템 성능을 실험적으로 향상시켰다.

  • PDF

내용기반 영상검색을 위한 색상과 휘도 정보를 이용한 필터 구현 (Implementation on the Filters Using Color and Intensity for the Content based Image Retrieval)

  • 노진수;백창희;이강현
    • 전자공학회논문지CI
    • /
    • 제44권1호
    • /
    • pp.122-129
    • /
    • 2007
  • 영상 정보의 이용도가 증가함에 따라 영상을 효율적으로 관리할 수 있는 시스템의 필요성이 증가하고 있다. 이에 따라, 본 논문에서는 색채 특징과 영상의 형태와 위치 정보의 효율적인 결합에 근거한 내용기반 영상 검색 엔진을 제안한다. 색채 특징으로는 색채의 공간적인 상관관계를 잘 나타내는 HSI 색채 히스토그램을 선택하였고, 형태와 위치 특징들은 HSI의 휘도 성분에서 불변 모멘트를 이용하여 추출하였다. 효율적인 유사도 측정을 위해 추출된 특징(색채 히스토그램, Hu 모멘트)을 결합하여 정확도를 측정하였다. http://www.freefoto.com에서 제공하는 DB를 사용하여 실험한 결과, 제안된 검색엔진은 93%의 정확도를 가지며 성공적으로 영상 검색에 사용될 수 있음을 보였다.

질감 기술자를 이용한 영상 검색 기법에 관한 연구 (A Study on Image Retrieval Method Using Texture Descriptor)

  • 조재훈;정현진;김영섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.745-746
    • /
    • 2008
  • In the last few years rapid improvements in hardware technology have made it possible to process, store and retrieve huge amounts of data ina multimedia format. As a result, Content-Based Image Retrieval(CBIR) has been receiving widespred interest during the last decade. This paper propose the content-based retrieval system as a method for performing image retrieval throught the effective feature analysis of the object of significant meaning by using texture descriptor.

  • PDF

An Image Retrieving Scheme Using Salient Features and Annotation Watermarking

  • Wang, Jenq-Haur;Liu, Chuan-Ming;Syu, Jhih-Siang;Chen, Yen-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.213-231
    • /
    • 2014
  • Existing image search systems allow users to search images by keywords, or by example images through content-based image retrieval (CBIR). On the other hand, users might learn more relevant textual information about an image from its text captions or surrounding contexts within documents or Web pages. Without such contexts, it's difficult to extract semantic description directly from the image content. In this paper, we propose an annotation watermarking system for users to embed text descriptions, and retrieve more relevant textual information from similar images. First, tags associated with an image are converted by two-dimensional code and embedded into the image by discrete wavelet transform (DWT). Next, for images without annotations, similar images can be obtained by CBIR techniques and embedded annotations can be extracted. Specifically, we use global features such as color ratios and dominant sub-image colors for preliminary filtering. Then, local features such as Scale-Invariant Feature Transform (SIFT) descriptors are extracted for similarity matching. This design can achieve good effectiveness with reasonable processing time in practical systems. Our experimental results showed good accuracy in retrieving similar images and extracting relevant tags from similar images.