• Title/Summary/Keyword: contaminated water

Search Result 1,325, Processing Time 0.026 seconds

Life Cycle Assessment of Activated Carbon Production System by Using Poplar (포플러를 이용한 활성탄 제조 시스템에 대한 전과정 평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.725-732
    • /
    • 2014
  • Phytoremediation is a technology to mitigate the pollutant concentrations such as metals, pesticides, solvents, oils, or others in contaminated water and soils with plants. The plants absorb contaminants through the root and store them in the root, stems, or leaves. Rapid growth trees such as poplar are used to remove low concentrated contaminants eco-friendly and economically in a wide contaminated region. This study was practiced to evaluate an activated carbon production system by using poplar wood discarded after phytoremediation. Life cycle assessment methodology was used to analyze environmental impacts of the system, and the functional unit was one ton of harvested poplar. It was estimated that the small size rotary kiln for activated carbon production from poplar wood had an environmental benefit in optimized conditions to minimize energy consumptions. The results of an avoided environmental impact analysis show that the system contribute to reduce environmental impacts in comparison with activated carbon production from coconut shell.

PFC Ultrasonic Decontamination Efficiency on the Various Types of Metal Specimens (금속 시편 형태에 따른 PEC 초음파 제염 성능)

  • Won Hui-Jun;Kim Gye-Nam;Jung Chung-Hun;Park Jin-Ho;Oh Won-Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.293-300
    • /
    • 2005
  • Ultrasonic decontamination of the type 304 stainless steel specimen loosely contaminated with $Eu_2O_3$ powders was investigated. Decontamination factors (DFs) by the three kinds of ultrasonic media such as water, pure PFC (Pefluorocarbon, $C_7F_{16}$) and a mixed solution of $99.9\;vol\%\;PFC\;and\;0.1\;vol\%$ anionic surfactant were determined. The determined DF values were 20, 50 and 200, respectively. This significant difference in the decontamination factors for the different decontamination solution was well explained by the surface tension of the media as well as the interaction between the positively charged surface of $Eu_2O_3$ powders and the anionic surfactant. Ultrasonic decontamination behavior of the loosely contaminated metal specimens such as plate, pipe, welding specimen and crevice specimen in the mixed solution of PFC and anionic surfactant was also investigated. The contaminants were completely removed for the tested specimens except for the longest specimen. For 6-cm long pipe specimen, however, $98.5\%$ of the contaminants were removed.

  • PDF

Characteristics of HFIX Insulated Wire Sheaths Contaminated by Pollutants (오염물질에 따른 HFIX 절연전선 피복의 특성 변화에 관한 연구)

  • Choi, Su-Gil;Nam, Yeong-Jae;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-17
    • /
    • 2020
  • In this study, the characteristics of HFIX insulated wire sheaths contaminated by pollutants were examined. KS C IEC 60811-1-3 standard was followed in performing the water-resistance wire tests. Pollutants were selected, and the specimens were exposed to the pollutants for a maximum duration of four weeks. The maximum tensile load and the elongation rate were measured each week. As the period of pollution exposure increased, the maximum tensile load of the specimens decreased by 6.22% and 6.52% at room temperature and high temperature, respectively, and 19.94% for specimens coated with a rust-proof lubricant. The elongation rate also decreased rapidly, such that the reductions in the properties of the sheath were significant. From the analysis of the surfaces using a scanning microscope, as the contamination period increased, structural changes such as perforation, split, and melting occurred, and the mechanical properties of the specimens decreased. Therefore, it is necessary to develop and follow an inspection cycle and periodically carry out repairs to prevent the deterioration of insulated wires.

Evaluation on Efficiency of VOC Removal in Groundwater Using Diffused Aeration System (Diffused Aeration System을 이용한 지하수 내 VOC 제거 효율성 평가)

  • Seo, Minwoo;Suk, Heejun;Choi, Doohyoung;Kim, Jinhoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • Diffused Aeration System (DAS) is one of the remediation methods used for removing contaminants in groundwater and this method brings air bubbles in contact with contaminated water, afterwards transferring contaminants in liquid phase into air phase. In this study, three applicability tests using DAS were conducted in two highly contaminated sites. For these tests, diffused air bubbles are generated with a in-flow rate of 17.1, 44.8 and 76.5 (1/min), respectively. The concentrations of TCE in grounwater and air phase were measured during the tests. The measured results showed that TCE concentration hit the highest value after 6~8 min and afterwards decreased gradually. Also, it was observed that the TCE concentration in air phase changed depending on the rate of diffused aeration. In addition, $K_La$ values from liquid to air phase were calculated based on the test results and those of three tests (test 1, 2 3) were 0.444, 1.158 and 1.836(1/hr), respectively. From the comparison of $K_La$ values, the faster air in-flow rate is, the higher the efficiency of the DAS is.

  • PDF

Contamination Source Assessment of Groundwater Nitrate in a Complex Terrain (복잡한 지형에서 발생하는 지하수의 질산태 질소 오염원 평가)

  • Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • Classification of land uses and analysis of nitrogen isotope fractionation in groundwater nitrate were carried out to examine its contamination sources in Jeju province. ${\delta}^{15}N$ values of urea (hydrolyzed with urease), ammonium sulfate, compost, water from septic tank were -1.7, -5.8, +14.1, and +24.0‰, respectively. Urea, when it was directly distillated, showed -16.5‰. Based on these ${\delta}^{15}N$ values, sources of nitrate could be classified as originated from chemical fertilizers with ${\delta}^{15}N$ values below +5‰ and as from animal manure or municipal waste with ${\delta}^{15}N$ values over +10‰. Results of ${\delta}^{15}N$ analysis of 33 wells showed that most wells had the chemical fertilizers as their dominant contamination source. However, some wells were contaminated by other sources: animal wastes or municipal wastes. Some wells were also contaminated by the combined sources of nitrate. It was also demonstrated that ${\delta}^{15}N$ analysis could be a useful tool even in the case where no apparent contamination source is found.

Effect of an aluminum chloride hemostatic agent on the dentin shear bond strength of a universal adhesive

  • Sujin Kim;Yoorina Choi;Sujung Park
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.14.1-14.11
    • /
    • 2023
  • Objectives: This study investigated the effect of an aluminum chloride hemostatic agent on the shear bond strength (SBS) of a universal adhesive to dentin. Materials and Methods: Eighty extracted human molars were trimmed at the occlusal dentin surfaces and divided mesiodistally. According to hemostatic agent application, specimens were randomly allocated into control (C) and hemostatic agent (Traxodent; H) groups. Each group was divided into 4 subgroups according to the adhesive system (n = 20): Scotchbond Multi-Purpose (SBER), Clearfil SE Bond (CLSE), All-Bond Universal etch-and-rinse mode (ALER), and All-Bond Universal self-etch mode (ALSE). SBS was measured for half of the specimens at 24 hours, and the other half were thermocycled in water baths (group T). Fracture surfaces were examined to determine the failure mode. The SBS was measured, and data were analyzed using 1-way analysis of variance, the Student's t-test, and the Tukey honestly significant difference test (p = 0.05). Results: No significant differences in SBS were found between groups C and H for any adhesive system at 24 hours. After thermocycling, a statistically significant difference was observed between CT+ALSE and HT+ALSE (p < 0.05). When All-Bond Universal was applied to hemostatic agent-contaminated dentin, the SBS of H+ALSE was significantly lower than that of H+ALER (p < 0.05). The SBER subgroups showed no significant differences in SBS regardless of treatment and thermocycling. Conclusions: When exposed dentin was contaminated by an aluminum chloride hemostatic agent before dentin adhesive treatment, application of All-Bond Universal in etch-and-rinse mode was superior to self-etch mode.

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (지반 오염도 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.45-54
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for in-situ delineation of subsurface contamination. While the resistivity measurement has a potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements. This study is focused on verifying the applicability of resistivity and capacitance measurements of CPT module to provide information on subsurface contaminated by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination. Electrical measurements of the CPT module showed high applicability to be used in detecting saturated soils contaminated by heavy metal and diesel plume floating above the groundwater table.

Isolation, Identification and Use of Bacterial Strain Ochrobactrum intermedium PDB-3 for Degradation of the Pesticide Chlorpyrifos

  • Diyorbek Kosimov;Lyudmila Zaynitdinova;Aziza Mavjudova;Muzaffar Muminov;Oybek Shukurov
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.44-54
    • /
    • 2024
  • One of the serious modern environmental problems is pollution caused by highly toxic pesticides. Only small amounts of applied pesticides reach their target, and the rest ends up in soil and water. Chlorpyrifos is a toxic, broad-spectrum organophosphate insecticide. In humans, chlorpyrifos inhibits acetylcholinesterase (AChE) in the peripheral and central nervous system, and particularly in children, small amounts of this pesticide cause neurotoxic damage. As the toxic effects of chlorpyrifos and its persistence in the environment require its removal from contaminated sites, it is essential to study the biological diversity of chlorpyrifos-degrading microorganisms. In this study, we sought to determine the chlorpyrifos-degrading ability of the bacterial strain Ochrobactrum intermedium PDB-3. This strain was isolated from soil contaminated with various pesticides and identified as PDB-3 based on morpho-cultural characteristics, MALDI-TOF MS, and 16S rRNA. Studies were conducted for 30 days in sterile soils containing initial concentrations of 50, 75, 100, and 125 mg/kg of chlorpyrifos. To determine the degradation of chlorpyrifos, a liquid culture of the strain was added to the soil at three optical densities: 0, and after 24 and 48 h (OD = 0.03, 0.2 and 0.32). Using GX-MS, we determined that chlorpyrifos was converted to 3,5,6-trichloro-2-pyridinol (TCP). We also found that with increasing optical density, rapid degradation of the initial concentration of chlorpyrifos occurred. Sterile soil without strain PDB-3 was used as a control sample.

Serial Flow Microwave Thermal Process System for Liquid Foods

  • Kim, Young-Jin;Lim, Seok-Won;Chun, Jae-Kun
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.446-449
    • /
    • 2005
  • Two single-magnetron heating systems (SM-HS), each with a helical glass heat exchanger and a cylindrical cavity, were combined to make a two-magnetron-in-series heating system (2MS-HS) in order to increase the heating capacity. A comparison using water showed that the heating performance of the 2MS-HS was increased by two-fold as compared to that of the SM-HS, resulting in energy saving of 7.0% in 2MS-HS. Pasteurization test of 2MS-HS conducted with model food (LB broth contaminated with Bacillus subtilis) showed two-fold higher treatment capacity compared to SM-HS. Relationships between outlet temperature of the processed food, flow rate, and residence time in the 2MS-HS were established for water. Optimum pasteurization capacity was 17 s, $73^{\circ}C$, at flow rate of 280 ml/min. The 2MS-HS could be applied to the small-scale pasteurization of liquid food.

Application of Gaseous Ozone for Cleaning Biological Weapon Agent Contaminated Building (생물테러시 실내제독을 위한 효율적인 오존가스의 적용 방법)

  • Yoon, Je-Yong;Jeong, Woo-Dong;Mun, Sung-Min;Cho, Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • This study attempted to develop the technology by gaseous ozone for decontaminating building affected by a model of biological weapon agent(Bacillus subtilis spores) instead of Bacillus anthracis spore. The use of ozone is attractive method from a practical point of view of decontamination procedure since it has strong oxidation power but no residue after application. We examined the disinfection efficiency of gaseous ozone to Bacillus subtilis spores which suspension was sprayed on different material surfaces and dried. Three different types of gaseous ozone was applied : dry ozone, dry ozone with humidified air, and water bubbled wet ozone. Dry ozone(1500ppm) failed to achieve any significant inactivation for 2hrs. However, six log reduction of B. subtilis spore was achieved within 30min by 1500ppm of water bubbled wet ozone. This result shows the noticeable inactivation efficiency by gaseous ozone compared with previous studies. Good performance by wet ozone was also found for military material surface.(i.e. : gas mask hood, protective garments, army peinted metal surface).