• Title/Summary/Keyword: contaminated

Search Result 4,693, Processing Time 0.032 seconds

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Determination of Petroleum Aromatic Hydrocarbons in Seawater Using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS를 이용한 해수 내 유류계 방향족탄화수소 분석법)

  • An, Joon Geon;Shim, Won Joon;Ha, Sung Yong;Yim, Un Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • The headspace solid-phase microextraction (HS-SPME) followed by gas chromatography/mass spectrometry procedure has been developed for the simultaneous determination of petroleum aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in seawater. The advantages of SPME compared to traditional methods of sample preparation are ease of operation, reuse of fiber, portable system, minimal contamination and loss of the sample during transport and storage. SPME fiber, extraction time, temperature, stirring speed, and GC desorption time were key extraction parameters considered in this study. Among three kinds of SPME fibers, i.e., PDMS ($100{\mu}m$), CAR/PDMS ($75{\mu}m$), and PDMS/DVB ($65{\mu}m$), a $65{\mu}m$ PDMS/DVB fiber showed the most optimal extraction efficiencies covering molecular weight ranging from 78 to 202. Other extraction parameters were set up using $65{\mu}m$ PDMS/DVB. The final optimized extraction conditions were extraction time (60 min), extraction temperature (50), stirring speed (750 rpm) and GC desorption time (3 min). When applied to artificially contaminated seawater like water accommodated fraction, our optimized HS-SPME-GC/MS showed comparable performances with other conventional method. The proposed protocol can be an attractive alternative to analysis of BTEX and PAHs in seawater.

Feasibility Study of the Stabilization for the Arsenic Contaminated Farmland Soil by Using Amendments at Samkwang Abandoned Mine (삼광광산 주변 비소 오염 토양에 대한 안정화 공법 적용성 평가)

  • Lee, Jung-Rak;Kim, Jae-Jung;Cho, Jin-Dong;Hwang, Jin-Yeon;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.217-228
    • /
    • 2011
  • The feasibility study for the stabilization process using 5 amendments was performed to quantify As-immobilization efficiency in farmland soils around Samkwang abandoned mine, Korea. For the batch experiments, with 2% and 3% of granular lime(2-5 mm in diameter), leaching concentration of As from the soil decreased by 86% and 95% respectively, compared to that without the amendment. When 5% and 10% of granular limestone was added in the soil, As concentration decreased by 82% and 95%, showing that lime and limestone has a great capability to immobilize As in the soil. From the results of batch experiments, continuous column(15 cm in dimeter and 100 cm in length) tests using granular lime and limestone as amendments was performed. Without the amendment, As concentration from the effluent of the column ranged from 167 ${\mu}g$/L to 845 ${\mu}g$/L, which were higher than Korea Drinking Water Limit(50 ${\mu}g$/L). However, only with 1% and 2% of lime, As concentration from the column dramatically decreased by 97% for 9 years rainfall and maintained below 50 ${\mu}g$/L. With 5% of limestone and the mixed amendment(1% of lime + 2% of limestone), more than 95% diminution of As leaching from the column occurred within I year rainfall and maintained below 20 ${\mu}g$/L, suggesting that the capability of limestone to immobilize As in the farmland soil was outstanding and similar to that of lime. Results of experiments suggested that As stabilization process using limestone could be more available to immobilize As from the soil than using lime because of low pH increase and thus less harmful side effect.

Monitoring and Risk Assessment of Cadmium and Lead in Agricultural Products (국내 농산물의 카드뮴 및 납 함량 조사 및 위해 평가)

  • Kim, Ji-Young;Choi, Nam-Geun;Yoo, Ji-Hyock;Lee, Ji-Ho;Lee, Young-Gu;Jo, Kyoung-Kyu;Lee, Cheol-Ho;Hong, Su-Myeong;Im, Geon-Jae;Hong, Moo-Ki;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.330-338
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the agricultural product (Pulses, Lettuces, Pumpkins, Apples, Pears and Tangerines) in Korea, monitoring of cadmium (Cd) and lead (Pb) contaminations of agricultural products in cultivated areas and abandoned mine areas were investigated, and risk assessment was performed through dietary intake of agricultural products. METHODS AND RESULTS: The average contents of Cd and Pb ranged from 0.001 to 0.018 mg/kg and from 0.007 to 0.032 mg/kg respectively. The result was showed that contents of Cd and Pb did not exceed maximum residual levels established by CODEX except pumpkins and apples. The average daily intake were in the range of $1.06{\times}10^{-3}$ to $4.76{\times}10^{-2}{\mu}g/kg$ b.w./day at the mean and 95th percentile for Cd, $4.53{\times}10^{-3}$ to $8.35{\times}10^{-2}{\mu}g/kg$ b.w./day at the mean and 95th percentile for Pb for general population, based on the Korean public nutrition report 2008. The Hazard Index (HI) from the ratio analysis between daily exposure and safety level values was smaller than 1.0. CONCLUSION(s): This results demonstrated that human exposure to Cd and Pb through dietary intake of agricultural produces from abandoned mine areas might not cause adverse effect exceeding to those from non-contaminated areas.

Effect of Organic Matter and Moisture Content on Reduction of Cr(VI) in Soils by Zerovalent Iron (영가철에 의한 토양 Cr(VI) 환원에 미치는 유기물 및 수분함량 영향)

  • Yang, Jae-E.;Lee, Su-Jae;Kim, Dong-Kuk;Oh, Sang-Eun;Yoon, Sung-Hwan;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • Current soil remediation principles for toxic metals have some limitations even though they vary with different technologies. An alternative technology that transforms hazardous substances into nonhazardous ones would be environmentally beneficial. Objective of this research was to assess optimum conditions for Cr(VI) reduction in soils as influenced by ZVI(Zero-Valent Iron), organic matter and moisture content. The reduction ratio of Cr(VI) was increased from 37 to 40% as organic matter content increased from 1.07 to 1.75%. In addition, Cr(VI) concentration was reduced as soil moisture content increased, but the direct effect of soil moisture content on Cr(VI) reduction was less than 5% of the Cr(VI) reduction ratio. However, combined treatment of ZVI(5%), organic matter(1.75%) and soil moisture(30%) effectively reduced the initial Cr(VI) to over 95% within 5 days and nearly 100% after 30 days by increasing oxidation of ZVI and concurrent reduction of Cr(VI) to Cr(III). The overall results demonstrated that ZVI was effective in remediating Cr(VI) contaminated soils, and the efficiency was synergistic with the combined treatments of soil moisture and organic matter.

Survey on the Pesticides Suspected as an Endocrine Disrupter In Agricultural Products Distributed in Seoul (서울지역 유통 농산물 중 내분비계 장애 추정농약의 잔류실태 조사)

  • Kim, Ouk-Hee;Park, Sung-Kyu;Choi, Young-Hee;Seoung, Hyun-Jung;Han, Sung-Hee;Lee, Young-Ju;Jang, Jung-Im;Kim, Yun-Hee;Jo, Han-Bin;Park, Geon-Yong;Yu, In-Sil;Han, Ki-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.36-47
    • /
    • 2011
  • This study was performed to investigate the contaminated status of endocrine disruptor-suspected pesticides in agricultural products distributed in northern Seoul in 20l0. We analyzed 33 kinds of pesticides by multiresidue analysis method in 3,081 samples. Twelve pesticidcs were detected 600 times and violated 22 times from the agricultural products. The highest frequency of detection was procymidone and that of violation was endosulfan. The highest rates of detection divided violation times as diazinon. In agricultural products, 466 samples had pesticide residues and 22 samples violated the maximum residue limits (MRLs). Agricultural products were also classified by type and red pepper powder belonged to the others was the highest detection rate at 70.7%, fruiting vegetables 35.3%, tea leaves 23.6%, stalk and stem vegetables 21.2%, fruits 14.6% and leafy vegetables 11.2%. The rates of violation sample were stalk and stem vegetables 1.1%, leafy vegetables 1.0% and roots and tubers 0.4%. Leek was to be managed primarily because it had the high detection and violation ratio and was detected together several pesticides.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

Decrease of Aflatoxin M1 Level in Raw Cow’s Milk using the Hazard Analysis and Critical Control Points (HACCP) System (HACCP 제도에 의한 우유의 아플라톡신 M1의 저감화)

  • Kim, Ki-Hwan;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2016
  • Aflatoxin M1 can be produced in cow’s milk when cows eat contaminated produce. Milk is a major source of food for infants and for children who have a weak level of immunity, and the detection of Aflatoxin M1 for risk assessment is necessary in order to reduce the amount of it in milk. In this study, the Aflatoxin M1 level was monitored for one year in raw milk samples obtained from Chungnam Province, Korea. The milk samples were divided into three categories: 1. milk samples from a standard general farm, 2. milk samples from a HACCP controlled farm, and 3. milk samples from the supply of Aflatoxin M1 reduced fodder. The average concentrations of Aflatoxin M1 in milk were 0.023±0.005 ug/l for the standard general farm, 0.017±0.004 ug/l for the HACCP controlled farm, and 0.013±0.003 ug/l for the supply of Aflatoxin M1 reduction fodder. Milk collected from the supply of Aflatoxin M1 reduction fodder had the lowest level of Aflatoxin M1. However, when efficiency and economic aspects are considered the most effective way of reducting Aflatoxin M1, could be taking milk from the HACCP controlled farm and implementing good feed management. Institutional support from the government, careful management of dairy farming, and a strict farm sanitation program are required in order to lower the level of Aflatoxin M1 in milk.

Microbiological Hazard Analysis for Strawberry Farms at the Harvest Stage to Establish Good Agricultural Practices (GAP) Model Based on Principle of HACCP (HACCP 원리에 기초하는 GAP모델 확립을 위한 딸기 농장의 수확단계에 대한 미생물학적 위해요소 조사)

  • Shim, Won-Bo;Kim, Kyeong-Yeol;Yoon, Yo-Han;Kim, Jang-Eok;Shim, Sang-In;Kim, Yun-Shik;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.104-110
    • /
    • 2013
  • This study assessed hazards at the harvest stage of strawberry farms which may cause risk to humans. A total of 216 samples were collected from 6 strawberry farms (soil culture farms: A, B, C; nutriculture farms: D, E, F) located in Western Gyeongnam. The collected samples were subjected for sanitary indicator bacteria (aerobic plate count, coliforms and Escherichia coli), major foodborne pathogens (E. coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus and Bacillus cereus), and fungi. The levels of APC and coliform in the soil culture farms were 1.0-6.9 and 0.4-4.6 log CFU/g (leaf, mL, hand or 100 $cm^2$), respectively. The samples obtained from the nutriculture farms were contaminated with the levels of 0.8-4.9, and 0.2-2.6 log CFU/g (leaf, mL, hand or 100 $cm^2$) of APC and coliform. However, E. coli was not detected in any samples. In major foodborne pathogens, S. aureus was detected at the level of ${\leq}$3.3 log CFU/hand in workers' hand samples and B. cereus was detected at the levels of 0.4-4.1 log CFU/g (hand or 100 $cm^2$) in soil, plants and workers' hygiene. L. monocytogenes, E. coli O157:H7 and Salmonella spp. were not detected. Fungi were detected at the levels of 1.0-5.2 and 0.2-4.4 log CFU/g (leaf, mL, hand or 100 $cm^2$) in soil culture and nutriculture farms, respectively.