• Title/Summary/Keyword: contact strongly pseudo-convex CR-manifold

Search Result 1, Processing Time 0.015 seconds

GEOMETRY OF CONTACT STRONGLY PSEUDO-CONVEX CR-MANIFOLDS

  • Cho, Jong-Taek
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1019-1045
    • /
    • 2006
  • As a natural generalization of a Sasakian space form, we define a contact strongly pseudo-convex CR-space form (of constant pseudo-holomorphic sectional curvature) by using the Tanaka-Webster connection, which is a canonical affine connection on a contact strongly pseudo-convex CR-manifold. In particular, we classify a contact strongly pseudo-convex CR-space form $(M,\;\eta,\;\varphi)$ with the pseudo-parallel structure operator $h(=1/2L\xi\varphi)$, and then we obtain the nice form of their curvature tensors in proving Schurtype theorem, where $L\xi$ denote the Lie derivative in the characteristic direction $\xi$.