DOI QR코드

DOI QR Code

GEOMETRY OF CONTACT STRONGLY PSEUDO-CONVEX CR-MANIFOLDS

  • Cho, Jong-Taek (Department of Mathematics Chonnam National University CNU The Institute of Basic Sciences)
  • Published : 2006.09.30

Abstract

As a natural generalization of a Sasakian space form, we define a contact strongly pseudo-convex CR-space form (of constant pseudo-holomorphic sectional curvature) by using the Tanaka-Webster connection, which is a canonical affine connection on a contact strongly pseudo-convex CR-manifold. In particular, we classify a contact strongly pseudo-convex CR-space form $(M,\;\eta,\;\varphi)$ with the pseudo-parallel structure operator $h(=1/2L\xi\varphi)$, and then we obtain the nice form of their curvature tensors in proving Schurtype theorem, where $L\xi$ denote the Lie derivative in the characteristic direction $\xi$.

Keywords

References

  1. E. Barletta and S. Dragomir, Differential equations on contact Riemannian manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 30 (2001), no. 1, 63-95
  2. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Pro- gress in Mathematics 203, Birkhauser Boston, Inc., Boston, MA, 2002
  3. D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214 https://doi.org/10.1007/BF02761646
  4. E. Boeckx, A class of locally ${\varphi}$ -symmetric contact metric spaces, Arch. Math. (Basel) 72 (1999), no. 6, 466-472 https://doi.org/10.1007/s000130050357
  5. E. Boeckx, A full classification of contact metric $({\kappa},{\mu})$-spaces, Illinois J. Math. 44 (2000), no. 1, 212-219
  6. E. Boeckx and J. T. Cho, ${\eta}$-parallel contact metric spaces, Differential Geom. Appl. 22 (2005), no. 3, 275-285 https://doi.org/10.1016/j.difgeo.2005.01.002
  7. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), no. 3, 427-448
  8. J. T. Cho, A class of contact Riemannian manifolds whose associated CR- structures are integrable, Publ. Math. Debrecen 63 (2003), no. 1-2, 193-211
  9. J. T. Cho and L. Vanhecke, Classification of symmetric-like contact metric $({\kappa},{\mu})$-spaces, Publ. Math. Debrecen 62 (2003), no. 3-4, 337-349
  10. J. T. Cho and S. H. Chun, The unit tangent sphere bundle of a complex space form, J. Korean Math. Soc. 41 (2004), no. 6, 1035-1047 https://doi.org/10.4134/JKMS.2004.41.6.1035
  11. J. T. Cho and J. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), no. 5, 913-932 https://doi.org/10.4134/JKMS.2005.42.5.913
  12. S. Ianus, Sulle varieta di Cauchy-Riemann, Rend. Accad. Sci. Fis. Mat. Napoli (4) 39 (1972), 191-195
  13. S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain struc- tures which are closely related to almost contact structure II, Tohoku Math. J. 13 (1961), 281-294 https://doi.org/10.2748/tmj/1178244304
  14. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Car- tan connections, Japan J. Math. (N.S.) 2 (1976), no. 1, 131-190 https://doi.org/10.4099/math1924.2.131
  15. S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717
  16. S. Tanno, Sasakian manifolds with constant ${\varphi}$-holomororphic sectional curvature, Tohoku Math. J. (2) 21 (1969), 501-507 https://doi.org/10.2748/tmj/1178242960
  17. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349-379 https://doi.org/10.2307/2001446
  18. S. Tanno, The standard CR structure on the unit tangent sphere bundle, Tohoku Math. J. (2) 44 (1992), no. 4, 535-543 https://doi.org/10.2748/tmj/1178227248
  19. Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. (2) 21 (1969), 117-143 https://doi.org/10.2748/tmj/1178243040
  20. S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25-41 https://doi.org/10.4310/jdg/1214434345

Cited by

  1. Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces vol.35, pp.1, 2009, https://doi.org/10.1007/s10455-008-9120-1
  2. Affine biharmonic submanifolds in 3-dimensional pseudo-Hermitian geometry vol.79, pp.1, 2009, https://doi.org/10.1007/s12188-008-0014-8
  3. Pseudo-Hermitian symmetries vol.166, pp.1, 2008, https://doi.org/10.1007/s11856-008-1023-0
  4. A CLASSIFICATION OF SPHERICAL SYMMETRIC CR MANIFOLDS vol.80, pp.02, 2009, https://doi.org/10.1017/S0004972709000252
  5. PSEUDOHERMITIAN LEGENDRE SURFACES OF SASAKIAN SPACE FORMS vol.30, pp.4, 2015, https://doi.org/10.4134/CKMS.2015.30.4.457
  6. SLANT CURVES IN CONTACT PSEUDO-HERMITIAN 3-MANIFOLDS vol.78, pp.03, 2008, https://doi.org/10.1017/S0004972708000737
  7. A Schur-type theorem for CR-integrable almost Kenmotsu manifolds vol.66, pp.5, 2016, https://doi.org/10.1515/ms-2016-0217
  8. Pseudo-Einstein manifolds vol.196, 2015, https://doi.org/10.1016/j.topol.2015.05.013