• 제목/요약/키워드: contact stresses

검색결과 316건 처리시간 0.022초

Non-Stationary Stress Analysis of Repaired Concrete Structures due to Hygral Transient Condition (대기 습도변화에 따른 콘크리트 보수체의 비정상적인 습도응력 조사)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • 제9권3호
    • /
    • pp.157-166
    • /
    • 1997
  • The object of this study was invest, igat, ing the failure phenomenon in the contact zone of rcpnired concrete structures due to the external climate change(hygral transient condition). This study was carrie out by calculating the non-stationary moisture and stress distribution in the repaired concrete structures with the cement mortar. In this analysis, main variables were the overlay thickness (Do=0.5-2.5cm). and the pre-wetting time(tc= l-5days). and the cxtcrnal 1.~1ative humidity(Ho=50-80%). The results show that the minimum overlay thickness and the minimum pre-wetting time are necessary to k e ~ p compressive stresses in the contact zone for a relative humidity.

Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

Two-Dimensional Finite Element Analysis of Hot Radial Forging (열간반경단조의 2차원 유한요소해석)

  • 박치용;조종래;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제14권5호
    • /
    • pp.1166-1180
    • /
    • 1990
  • The study is concerned with the two-dimensional thermo-viscoplastic finite element analysis for radial forging as an incremental forging process. The deformation and temperature distribution of the workpiece during radial forging are studied. The analysis of deformation and the analysis of heat transfer are carried out for simple upsetting of cylinder by decoupling the above two analyses. A method of treatment for heat transfer through the contact region between the die and the workpiece is suggested, in which remeshing of the die elements is not necessary. Radial forging of a mild steel cylinder at the elevated temperature is subjected to the decoupled finite element analysis as well as to the experiment. The computed results in deformation, load and temperature distribution are found to be in good agreement with the experimental observations. As an example of viscoplastic decoupled analysis of hot radial forging, forging of a square section into a circular section is treated. The stresses, strains, strain rates and temperature distribution are computed by superposing material properties as the workpiece is rotated and forged incrementally. It was been thus shown that proposed method of analysis can be effectively applied to the hot radial forging processes.

Numerical model for bolted T-stubs with two bolt rows

  • Daidie, Alain;Chakhari, Jamel;Zghal, Ali
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.343-361
    • /
    • 2007
  • This article presents a numerical tool for dimensioning two-threaded fasteners connecting prismatic parts subjected to fatigue tension loads that are coplanar with the screw axis. A simplified numerical model is developed from unidirectional finite elements, modeling the connected parts and screws with bent elements and the elastic contact layer between the parts with springs. An algorithm updating the contact stiffness matrix, calculating forces and displacements at each node of the structure and thus normal stresses in the screws in both static and fatigue is further developed using C language. An experimental study is also conducted in parallel with the numerical approach to validate the developed model assumptions, the numerical model and the 3D finite element results. Since stiffness values for the compressive zones in the parts are analytically difficult to determine, a statistical software method is used, from which a tuning factor is derived for identifying these stiffness values. The method is also applied to set out the influence of each parameter on the fatigue behaviour of each screw. Finally, the developed model will be used to establish a new, sophisticated, fast and accurate tool for dimensioning bolted mechanical structures.

Fatigue Behavior Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로거동 평가)

  • Song, Sun-Ok;Eom, Mac;Yang, Shin-Chu;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.447-453
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue behavior evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable for fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation for the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type. And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%)more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective for ensure against fatigue risks.

  • PDF

A Study on Contact Deformation of Automotive Door Weatherstrip Using Non-linear Finite Element Method (비선형 유한요소법을 이용한 자동차 도어 웨더스트립의 접촉변형에 관한 연구)

  • Kim Byung Soo;Moon Byung-Young;Kim Kwang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2005
  • In vehicle door system, weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The higher efficient a weatherstrip is, the more durable it is in contact between the door and body frame. In this study, nonlinear finite element(FE) analysis is performed to obtain cauchy-stresses, displacements and reaction forces of the weatherstrip. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. The MARC which is a commercial software for the nonlinear analysis of a flexible FE model is used. Twenty-one cases of the FE model are developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased. When the weatherstrip is designed, it would be considered that the displacement value of the weatherstrip has to be less than 7.2mm.

Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

Vibration Analysis of Bladed Disk using Non-contact Blade Vibration System

  • Joung, Kyu-Kang;Han, Chak-Heui;Kang, Suk-Chul;Kim, Yeong-Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.871-876
    • /
    • 2008
  • The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue(HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.

  • PDF

Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles (전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향)

  • Lee, Dong-Hyung;Choi, Don-Bum;Kang, Seong-Woong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제21권2호
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

Structural analysis of a prestressed segmented girder using contact elements in ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.319-327
    • /
    • 2017
  • Studying the structural behavior of prestressed segmented girders is quite important due to the large use this type of solution in viaducts and bridges. Thus, this work presents a nonlinear three-dimensional structural analysis of an externally prestressed segmented concrete girder through the Finite Element Method (FEM), using a customized ANSYS platform, version 14.5. Aiming the minimization of the computational effort by using the lowest number of finite elements, a new viscoelastoplastic material model has been implemented for the structural concrete with the UPF customization tool of ANSYS, adding new subroutines, written in FORTRAN programming language, to the main program. This model takes into consideration the cracking of concrete in its formulation, being based on fib Model Code 2010, which uses Ottosen rupture surface as the rupture criterion. By implementing this new material model, it was possible to use the three-dimensional 20-node quadratic element SOLID186 to model the concrete. Upon validation of the model, an externally prestressed segmented box concrete girder that was originally lab tested by Aparicio et al. (2002) has been computationally simulated. In the discretization of the structure, in addition to element SOLID186 for the concrete, unidimensional element LINK180 has been used to model the prestressing tendons, as well as contact elements CONTA174 and TARGE170 to simulate the dry joints along the segmented girder. Stresses in the concrete and in the prestressing tendons are assessed, as well as joint openings and load versus deflection diagrams. A comparison between numerical and experimental data is also presented, showing a good agreement.