• Title/Summary/Keyword: contact modeling

Search Result 546, Processing Time 0.028 seconds

A Modeling and Simulation Implementation on the Power Line Disturbances by Loss of Contact for the High-Speed Railway Vehicle (고속전철 주행시 이선에 따른 전원외란 현상 모델링 및 시뮬레이션 구현)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young;Gimm, Yoon-Myoung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1137-1142
    • /
    • 2008
  • In this paper, an effect on power conversion unit in high-speed railway vehicle by loss of contact between a catenary system and pantograph suppling electrical power to high-speed railway vehicle are investigated. One of the most important needs accompanied by increasing the speed of high-speed railway vehicle is reduced that arc phenomenon by loss of contact brings out EMI. in case of high-speed railway vehicle using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occur. To analysis the effect on loss of contact, it is necessary electrical modeling system between the contact line and the pantograph according to the loss of contact. Therefore analytical model of a contact line and a pantograph is constructed to simulate the behaviour of loss of contact. The reliability of the modeling system is verified by simulation implementation on kinds of loss of contact.

  • PDF

GOLDEN PARA-CONTACT METRIC MANIFOLDS

  • Beldjilali, Gherici;Bouzir, Habib
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1209-1219
    • /
    • 2022
  • The purpose of the present paper is to introduce a new class of almost para-contact metric manifolds namely, Golden para-contact metric manifolds. Then, we are particularly interested in a more special type called Golden para-Sasakian manifolds, where we will study their fundamental properties and we present many examples which justify their study.

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합 부의 모델링)

  • Cho Seong-Wook;Oh Je-Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.128-135
    • /
    • 2006
  • Rational dynamic modeling and analysis method f3r complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by using the influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method, the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model could be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models, which demonstrated the practical applicability of the proposed method.

Modeling of Non-linear Leaf Spring for Commercial Vehicle (상용차량의 비선형 Hotchkiss 스프링 모델링)

  • 유승환;김영배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A Hotchkiss spring has been widely utilized for commercial vehicle. Usually, the Hotchkiss spring has non-linear characteristics, i.e. it has a piecewise spring stiffness as well as hysterisis phenomenon. Therefore, the modeling of the Hotchkiss spring requires many considerations to fulfill satisfactory vehicle kinematic and dynamic relationships. Also, the spring has difficulties in modeling for presenting contact mechanism. In this paper, the modeling technique for the Hotchkiss spring has been descried. The modeling covers non-linear characteristics as well as contact problems for multi-body dynamic simulation. The force-displacement results are compared with experimental and FEM ones. Also, the comparison between three link type leaf spring model and proposed one has been considered in this paper.

Analysis of conducted EMI source on powering mode of next generation high-speed train (차세대 고속전철 주행에 따른 전도성 노이즈 요인분석)

  • Kim, Jae-Moon;Kim, Sei-Chan;Kim, Hak-Man
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.948-949
    • /
    • 2008
  • In this paper, an effect on power conversion unit in next generation high-speed train by loss of contact between a contact wire and pantograph supplied electrical power to high-speed train are investigated. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that arc phenomenon by loss of contact brings out EMI. To analysis of conducted EMI source on powering mode of next generation high-speed train, it is necessary electrical modeling system between the contact wire and the pantograph according with loss of contact. Therefore analytical model of a contact wire and a pantograph is constructed to simulate the behaviour of loss of contact. The reliability of the modeling system is verified by simulation implementation on loss of contact.

  • PDF

A Study on the Application of TEO and STFT Signal Processing Techniques for Detection of Electric Railway Contact Loss (전기철도차량 이선 현상 검측을 위한 TEO 및 STFT 신호처리기법 적용에 관한 연구)

  • Jung, No-Geon;Park, Chul-Min;Lee, Jae-Bum;Park, Young;Shin, Seung-kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1530-1535
    • /
    • 2018
  • In this paper, A technique for detecting contact loss at the input power of a railway vehicle has been studied when the contact loss occurs in the feed system. The impedance of the actual railway line was applied to the modeling of the feed system, and modeling was performed based on the performance of the electric railway vehicle. The input voltage and current of the railway vehicle through modeling were analyzed by applying TEO and STFT signal processing technique.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Contact Pressure Analysis of a Windshield Wiperblade (와이퍼 블레이드의 누름압 해석)

  • Lee, Byoung-Soo;Shin, Jin-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.