• 제목/요약/키워드: contact material and area

검색결과 328건 처리시간 0.027초

단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석 (Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells)

  • 권혁용;이재두;김민정;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

CMP 연마입자의 마찰력과 연마율에 관한 영향 (Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP))

  • 김구연;김형재;박범영;이현섭;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

치관수복물의 형태와 치은반응에 관한 연구 (A Study on Corwn Contour and Gingival Response)

  • 양홍서;장완식
    • 대한치과의사협회지
    • /
    • 제21권5호통권168호
    • /
    • pp.415-423
    • /
    • 1983
  • A total of 202 full coverage crowns from 31 patients was investigated to find out the relationships between crown contour and gingival response. Every experimental crown has its contralateral natural tooth for its control group. Gingival Index and buccolingual width of the crowns were measured on both experimental and control group. Following conclusions were obtained from the study. 1. Most of the crown restorations were overcontoured and the increments were servere at cervical and height of contour area. 2. Height of contour and contact point of the restored crown were located near cervical area. Besides, most crowns had narrow embrasure with wide contact area. 3. Gingival Index around crown restorations was significantly larger than that of control group. 4. the interrelationship between Gingival Index and restored material or restored period was not verified at 5% significant level. 5. When grouping the artificial crowns into overcontoured, normal contoured, and undercontoured group by their width increment, the gingival inflammation was the severest in the overcontoured group and the mildest in the undercontoured group.

  • PDF

표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화 (The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment)

  • 지현진;최재완;김규태
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

철도 차축재료의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior for Railway Axle Material)

  • 최성종;권종완
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.139-145
    • /
    • 2007
  • Fretting is a kind of surface damage mechanism observed in mechanically jointed components and structures. The initial crack under fretting damage occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. This can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these experiments, it is found that the fretting fatigue limit decreased about 37% compared to the plain fatigue limit. In fretting fatigue, the wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

  • Choi, Jung-Hae;Seo, Yong-Seok;Chae, Byung-Gon
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.53-60
    • /
    • 2013
  • Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1) quartz beads under low-pressure and high-alkalinity conditions and 2) a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM) was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM) were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

Effect of Particle Size of Ceria Coated Silica and Polishing Pressure on Chemical Mechanical Polishing of Oxide Film

  • Kim, Hwan-Chul;Lim, Hyung-Mi;Kim, Dae-Sung;Lee, Seung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.167-172
    • /
    • 2006
  • Submicron colloidal silica coated with ceria were prepared by mixing of silica and nano ceria particles and modified by hydrothermal reaction. The polishing efficiency of the ceria coated silica slurry was tested over oxide film on silicon wafer. By changing the polishing pressure in the range of $140{\sim}420g/cm^2$ with the ceria coated silica slurries in $100{\sim}300nm$, rates, WIWNU and friction force were measured. The removal rate was in the order of 200, 100, and 300 nm size silica coated with ceria. It was known that the smaller particle size gives the higher removal rate with higher contact area in Cu slurry. In the case of oxide film, the indentation volume as well as contact area gives effect on the removal rate depending on the size of abrasives. The indentation volume increase with the size of abrasive particles, which results to higher removal rate. The highest removal rate in 200 nm silica core coated with ceria is discussed as proper combination of indentation and contact area effect.

전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향 (An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process)

  • 김민태;노정훈;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF

Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block

  • Matsui, Sadaoki;Uto, Shotaro;Yamada, Yasuhira;Watanabe, Shinpei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.367-375
    • /
    • 2018
  • The present paper considers the contact between energy-saving device of ice-class vessel and ice block. The main objective of this study is to clarify the tendency of the ice impact force and the structural response as well as interaction effects of them. The contact analysis is performed by using LS-DYNA finite element code. The main collision scenario is based on Finnish-Swedish ice class rules and a stern duct model is used as an energy-saving device. For the contact force, two modelling approaches are adopted. One is dynamic indentation model of ice block based on the pressure-area curve. The other is numerical material modelling by LS-DYNA. The authors investigated the sensitivity of the structural response against the ice contact pressure, the interaction effect between structure and ice block, and the influence of eccentric collision. The results of these simulations are presented and discussed with respect to structural safety.

Characterization of Black Carbon Collected from Candle Light and Automobile Exhaust Pipe

  • Cho, Seo-Rin;Cho, Han-Gook
    • 대한화학회지
    • /
    • 제57권6호
    • /
    • pp.691-696
    • /
    • 2013
  • Black carbon contributes to global warming and melting of polar ice as well as causing respiratory diseases. However, it is also an inexpensive, easily available carbon nano material for elementary chemistry experiments. In this study, black carbon samples collected from candle light and automobile exhaust pipes have been investigated to examine their compositions and surface characteristics. The observed broad G and D bands and amorphous $sp^3$ band in their Raman spectra as well as the high intensity of the D (defect) band reveal that black carbon is principally made of amorphous graphite. The black carbon deposits in automobile exhaust pipes are apparently more amorphous, probably due to the shorter time allowed for formation of the carbonaceous matter. An exceptionally large water contact angle ($159.7^{\circ}$) is observed on black carbon, confirming its superhydrophobicity. The surface roughness evidently plays an important role for the contact angle much larger than that of crystalline graphite ($98.3^{\circ}$). According to the Sassie-Baxter equation, less than 1% the area actually in contact with the water drop.