• Title/Summary/Keyword: contact interface

Search Result 992, Processing Time 0.045 seconds

Model and Experimental Isotherms of Soluble Proteins at water sur faces (수용성 단백질의 계면상 등온곡선의 모델과 실험적 규명)

  • Cho, D.
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.328-330
    • /
    • 2003
  • A surface equation of state for globular proteins at air-water interface accounting for the molecular structure, segment-segment, segment-solvent, and electrostatic interactions was proposed and compared to C-14 isotope experiments. This lattice model comprised a simplifying assumption that all adsorbed segments are in the form of trains. The number of segment adsorbed per molecule in case of bovine serum albumin linearly depended on the surface concentration whereas the lysozyme segments adsorbed at the interface were independent of surface concentration. The segment-solvent(water) interaction for both of proteins were found to be unfavorable owing to the proteins unfolding. From comparison of model computation and experimental data, BSA unfolded more than lysozyne because of the larger surface area of contact.

  • PDF

Effect of two-temperature on the energy ratio at the boundary surface of inviscid fluid and piezothermoelastic medium

  • Kumar, Rajneesh;Sharma, Poonam
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.743-752
    • /
    • 2020
  • The phenomenon of reflection and transmission of plane waves at an interface between fluid half space and orthotropic piezothermoelastic solid half-space with two-temperature has been investigated. Energy ratios of various reflected and transmitted waves are computed with the use of amplitude ratios. The law of conservation of energy across the interface has been justified. It is found that the energy ratios are the functions of angle of incidence, frequency of independent wave and depend on the different piezothermoelastic material. A piezothermoelastic material has been considered which is in welded contact with water. Variations of energy ratios corresponding to the reflected waves and transmitted waves are computed and shown graphically for the two different models. A particular reduced case of interest is also discussed.

Interface Charateristics of Plasma co-Polymerized Insulating Film/Pentacene Semiconductor Film (플라즈마 공중합 고분자 절연막과 펜타센 반도체막의 계면특성)

  • Shin, Paik-Kyun;Lim, H.C.;Yuk, J.H.;Park, J.K.;Jo, G.S.;Nam, K.Y.;Park, J.K.;Kim, Y.W.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1349_1350
    • /
    • 2009
  • Thin films of pp(ST-Co-VA) were fabricated by plasma deposition polymerization (PVDPM) technique. Properties of the plasma polymerized pp(ST-Co-VA) thin films were investigated for application to semiconductor device as insulator. Thickness, dielectric property, composition of the pp(ST-Co-VA) thin films were investigated considering the relationship with preparation condition such as gas pressure and deposition time. In order to verify the possibility of application to organic thin film transistor, a pentacene thin film was deposited on the pp(ST-Co-VA) insulator by vacuum thermal evaporation technique. Crystalline property of the pentacene thin film was investigated by XRD and SEM, FT-IR. Surface properties at the pp(ST-Co-VA)/pentacene interface was investigated by contact angle measurement. The pp(ST-Co-VA) thin film showed a high-k (k=4.6) and good interface characteristic with pentacene semiconducting layer, which indicates that it would be a promising material for organic thin film transistor (OTFT) application.

  • PDF

Preparation of Bi-materials by Powder Metallurgy Method (분말야금법을 이용한 Bi-materials의 제조)

  • Lee In-Gyu;Lee Kwang-Sik;Chang Si-Young
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

Cavity and Interface effect of PI-Film on Charge Accumulation and PD Activity under Bipolar Pulse Voltage

  • Akram, Shakeel;Wu, Guangning;Gao, GuoQiang;Liu, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2089-2098
    • /
    • 2015
  • With the continuous development in insulation of electrical equipment design, the reliability of the system has been enhanced. However, in the manufacturing process and during operation under continues stresses introduce local defects, such as voids between interfaces that can responsible to occurrence of partial discharge (PD), electric field distortion and accumulation of charges. These defects may lead to localize corrosion and material degradation of insulation system, and a serious threat to the equipment. A model of three layers of PI film with air gap is presented to understand the influence of interface and voids on exploitation conditions such as strong electrical field, PD activity and charge movement. The analytical analysis, and experimental results are good agreement and show that the lose contact between interfaces accumulate more residual charges and in consequences increase the electric field intensity and accelerates internal discharges. These residual charges are trapped charges, injected by the electrodes has often same polarity, so the electric field in cavities increases significantly and thus partial discharge inception voltage (PDIV) decreases. Contrary, number of PD discharge quantity increases due to interface. Interfacial polarization effect has opposite impact on electric field and PDIV as compare to void.

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

The development of FE model for the precision prediction of strip profile in flat rolling (판 압연에서 판 형상 정밀 예측을 위한 유한요소 모델 개발)

  • Yun K. H.;Kim T. H.;Shin T. J.;Lee W. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.197-203
    • /
    • 2004
  • A full finite element (FE)-based approach is presented for the precision analysis of the strip profile in flat rolling. Basic FE models for the analysis of the mechanical behavior of the strip and of the rolls are described in detail. Also described is an iterative strategy for a rigorous treatment of the mechanical contact occurring at the roll-strip interface and at the roll-roll interface. Then, presented is an integrated FE process model for the coupled analysis of the mechanical behavior of the strip, work roll, and backup roll in four-high mill. A series of process simulation are conducted and the results are compared with the measurements made in hot and cold rolling experiments.

  • PDF

A Study on the Transfer of the Oscillator's Motion Information with 2 Degrees of Freedom;Thermal Boundary Resistance (2자유도 진동계의 운동정보 전달에 관한 연구;경계면열저항)

  • Choi, Soon-Ho;Choi, Hyun-Kye;Jin, Chang-Fu;Kim, Kyung-Kun;Yoon, Seok-Hun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1102-1107
    • /
    • 2005
  • The analysis of the thermal boundary resistance is very important in the both cases of microscale and macroscale systems because it plays a role of thermal barrier against a heat flow. Especially, since fairly large heat energy is generated in microscale or nanoscale systems with electronic chips, the thermal boundary resistance is a key factor to guarantee the performance of those devices. In this study, the transfer of the oscillator's motion information with 2 degrees of freedom is investigated for clarifying the mechanism of a thermal boundary resistance. We found that the transfer of the oscillator's motion information is defined as a cross-correlation coefficient and the magnitude of it determines the temperature jump over a solid interface. That is, the temperature jump over an interface increases as the magnitude of a cross-correlation coefficient decreases and vice versa.

  • PDF

Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface (LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석)

  • Kim, H.M.;Jang, K.S.;Yi, J.;Sohn, Sun-Young;Park, Kuen-Hee;Jung, Dong-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF

Development of Simple Solvent Treating Methods to Enhance the Efficiency of Small-Molecule Organic Solar Cells

  • Kim, Jin-Hyun;Heo, Il-Su;Gong, Hye-Jin;Yu, Yeon-Gyu;Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.276-276
    • /
    • 2012
  • The interface morphology of organic active layers is known to play a crucial role in the performance of organic photovoltaic (OPV) cells. Especially, a controlled nanostructure with a large contact area between electron donor (D) and acceptor (A) layers is necessary to improve the power conversion efficiency (PCE) of the cells since the short exciton diffusion lengths in organic semiconductors limit the charge (hole and electron) separation before excitons recombination. In this work, we developed simple solvent treating methods to fabricate a nanostructured DA interface and applied them to enhance the PCE of ZnPc/C60 based small molecule OPV cells. Interestingly, it was observed that the solvent treatment on the donor layer prior to the deposition of the acceptor layer resulted in a significant decrease in PCE, which was due to an existence of undesirable voids at the DA interface. Instead, the solvent vapor treatment after the DA bilayer formation led to densely packed and well dispersed DA contacts. Consequently, 3-fold enhancement of PCE as compared to the untreated bilayer cell was accomplished.

  • PDF