• Title/Summary/Keyword: contact geometry

Search Result 364, Processing Time 0.023 seconds

Lubrication of Contact Area in Ball Reducer with Waved Grooves (파형 구름볼 감속기의 접촉점에서의 윤활특성 해석)

  • Jang, Si-Youl;Park, Kyoung-Kuhn;Kim, Wan-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.143-149
    • /
    • 2002
  • Ball reducer with waved grooves has many advantages over other reducers for the high-reduction ratios, low noise and low energy loss, etc. The mechanism of force transmission is very similar to that of cam and follower in automobile valve train system especially in the contact geometry. In this study, we have investigated the traces of contact between ball and outer race and the working behaviors with a certain reduction ratio. In order to verify the contact behaviors between ball and outer race, which determines the critical endurance life the contact velocity and load are computed for a cycle. During some period of a cycle, the contact velocity reverses its direction very suddenly, which causes undesirable endurance performance of this machinery. From the computational investigation in this work, we hope to predict similar contact damages in other machinery due to this kind of contact behaviors, which is very common in many contact phenomena.

  • PDF

Three-Dimensional Contact Dynamic Model of the Human Knee Joint During Walking

  • Mun, Joung-Hwan;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.211-220
    • /
    • 2004
  • It is well known that the geometry of the articular surface has a major role in determining the position of articular contact and the lines of action for the contact forces. The contact force calculation of the knee joint under the effect of sliding and rolling is one of the most challenging issues in this field. We present a 3-D human knee joint model including sliding and rolling motions and major ligaments to calculate the lateral and medial condyle contact forces from the recovered total internal reaction force using inverse dynamic contact modeling and the Least-Square method. As results, it is believed that the patella, muscles and tendon affect a lot for the internal reaction forces at the initial heel contact stage. With increasing flexion angles during gait, the decreasing contact area is progressively shifted to the posterior direction on the tibia plateau. In addition, the medial side contact force is larger than the lateral side contact force in the knee joint during normal human walking. The total internal forces of the knee joint are reasonable compared to previous studies.

ON GENERIC SUBMANIFOLDS OF MANIFOLDS EQUIPPED WITH A HYPERCOSYMPLECTIC 3-STRUCTURE

  • Kim Jeong-Sik;Choi Jae-Dong;Tripathi Mukut Mani
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.321-335
    • /
    • 2006
  • Generic submanifolds of a Riemannian manifold endowed with a hypercosymplectic 3-structure are studied. Integrability conditions for certain distributions on the generic submanifold are discussed. Geometry of leaves of certain distributions are also studied.

Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations (비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법)

  • Chung Keun-Young;Lee Sung-Uk;Min Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF

Development of Catenary Stagger and Height Measurement System using Laser (레이저를 이용한 전차선 편위 및 높이 측정 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Song, Jae-Yeol;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • Catenary and Pantograph are used to transmit electrical energy to electric railways. Catenary (Overhead Contact Lines) should be installed precisely and managed for stable train operations. But external factors such as weather, temperature, etc., or aging affect catenary geometry. Changed catenary stagger and height cause high voltage spark or instant electric contact loss. Big spark derived from contact loss can damage the pantograph carbon strip and overhead contact lines that might interrupt the train operations. Therefore, to prevent a big scale spark or electric contact loss, catenary maintenance are required catenary geometry measurement systems with catenary maintenance capability. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Laser Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system detects suspicious overhead line sections with excessive stagger and height stagger variance.

Analysis of sliding/Impacting Wear in T7be to Convex Spring Contact and Relevant Contact Problem

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho;Ha, Jae-Wook;Kim, Seock-Sam;Jeon, Kyeong-Lak
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally, The vibration of the tube causes the wear while the springs support it As for the supporting conditions, the contacting normal farce of 5 N,0 N and the gap of 0.1 mm are applied. The gap condition is for considering the influence of simultaneous impacting and sliding on wear. The wear volume and depth decreases in the order of the 5 N,0 N and the gap conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour, The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. The wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map.

Optimal Shape Design of Hub Edge Contact Profile in a Press-Fitted Shaft (압입축 접촉압력 최소화를 위한 허브 접촉부 형상 최적화)

  • Choi, Ha-Young;Lee, Dong-Hyung;Kwon, Seok-Jin;Seo, Jeong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.559-564
    • /
    • 2016
  • The objectives of this paper are to develop a finite element analysis model to analyze press-fitted and bending load conditions in a press-fitted assembly, and propose a hub shape optimization method to minimize contact pressure near the shaft contact edge. Numerical asymmetric-axisymmetric finite element models have been developed to predict contact stress on press-fitted shafts. The global optimization method, genetic algorithm, local optimization method, and sequential quadratic programming were applied to a press-fitted assembly to optimize the hub contact edge geometry. The results showed that the maximum contact pressure with the optimized hub shape decreased more than 60 % compared to conventional hubs and the maximum contact stress affecting fatigue life was reduced about 47 %. Hub shape optimization can be useful to increase the load capability of press fits in terms of wear and fatigue behavior.

Wear Analysis of a Vibrating Tube supported by Thin Strip Springs incorporating the Supporting Conditions (얇은 판 스프링에 의해 지지되는 튜브의 진동 시 지지조건에 따른 마멸분석)

  • Kim, Hyeong-Gyu;Ha, Jae-Uk;Lee, Yeong-Ho;Heo, Seong-Pil;Gang, Heung-Seok
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.63-70
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally. The wear is caused by the vibration of the tube while the springs support it. As for the supporting conditions, applied are the contacting normal force (P) of 5 N, just-contact (P = 0 N) and the gap of 0.1 mm. The gap condition is tried far considering the influence of simultaneous impacting and sliding on wear. Results show that the wear volume increases in the order of the gap, the just-contact and the 5 N conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour. The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. Wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map previously obtained.

  • PDF

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF