Commun. Korean Math. Soc. 21 (2006), No. 2, pp. 321-335

ON GENERIC SUBMANIFOLDS OF
MANIFOLDS EQUIPPED WITH A
HYPERCOSYMPLECTIC 3-STRUCTURE

JEONG-SIK KiM, JAEDONG CHOI, AND MUKUT MANI TRIPATHI

ABSTRACT. Generic submanifolds of a Riemannian manifold en-
dowed with a hypercosymplectic 3-structure are studied. Integra-
bility conditions for certain distributions on the generic submanifold
are discussed. Geometry of leaves of certain distributions are also
studied.

1. Introduction

Three local (global) almost complex structures which satisfy the quat-
ernionic relations of the imaginary quaternions, constitute the quater-
nionic analog of almost complex structures, namely the almost quater-
nion (hypercomplex) structure ([5]). Quaternion K&hler manifolds and
hyper-Kéahler manifolds are special and interesting cases of Riemannian
manifolds with almost quaternion and almost hypercomplex structure,
respectively. Quaternion Kéahler manifolds are Einstein, hyper-Kéhler
manifolds are Ricci flat and their respective holonomy groups are in-
cluded in the Berger list ([2]). An almost contact 3-structure was defined
by Kuo ([8]) and it is closely related to both almost quaternion and al-
most hypercomplex structures. Hypersurfaces of manifolds with almost
hypercomplex structure inherit naturally three almost contact struc-
tures which constitute an almost contact 3-structure. An almost contact
metric 3-structure manifold is always (4m + 3)-dimensional. The struc-
tural group of the tangent bundle of a (4m + 3)-dimensional manifold
equipped with an almost contact 3-structure is reducible to Sp (m) x Is.

In particular, if each almost contact metric structure of an almost
contact metric 3-structure is Sasakian, then this structure is called a
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Sasakian 3-structure. Riemannian manifolds with Sasakian 3-structure
are called 3-Sasakian manifolds. They are Einstein ([6]) and have many
links with quaternion Kéahler and hyper-Kéhler manifolds. In fact, a 3-
Sasakian manifold (with some regularity conditions) fibers over a quater-
nion Kéahler manifold ([5]) and can be imbedded into a hyper-Kéhler
manifold ([4]). A (4m + 3)-dimensional sphere is a 3-Sasakian manifold.

Recently, F. Martin Cabrera introduced a hypercosymplectic 3-struct-
ure ([9]), where each almost contact metric structure of an almost con-
tact metric 3-structure is cosymplectic ([3]). A (4m + 3)-dimensional
torus is a typical example of a hypercosymplectic 3-structure manifold.

In [7], the authors studied hypersurfaces of a manifold equipped with
a hypercosymplectic 3-structure. A. Bejancu studied generic subman-
ifolds of 3-Sasakian manifolds ([1]). In the present paper we study
generic submanifolds of a manifold equipped with a hypercosymplec-
tic 3-structure. The paper is organized as follows. Section 2 contains
preliminaries. In section 3, some basic results are given. Integrability
conditions for certain distributions on the generic submanifold are in-
vestigated in section 4. In the last section, geometry of leaves of certain
distributions are studied.

2. Hypercosymplectic 3-structures
Let M be a (4m+3)-dimensional manifold endowed with three almost
contact structures (¢q,&a,7M.), @ = 1,2, 3, that is,

(21) 90(21 = —-I + 77(1 ® ga, na(fa) = 17 Saa(ga) = Oa 77a © Qoa = 0

Let these three almost contact structures satisfy

(2.2) Pa© b =M ®E& = —Pb 0 Yo+ 1 ® & = o,
(2.3) ©0abp = —ppéa = &,

(24) N © Pb = ~1b © Pa = e,

(2.5) na(§p) = m(&) =0, a#b

for any cyclic permutation (a,b,c) of (1,2,3). Then we say that M
is endowed with an almost contact 3-structure (Kuo, [8]). If M is a
Riemannian manifold, then there is always a Riemannian metric ¢ on

M such that
(2-6) g(‘PaXa ‘Pay) = g(X, Y) - na(X)na(Y), a=1,2,3
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(2'7) g(X’ga) :na(X)7 a=1,2,3

for all XY € TM. Then we say that M is endowed with an almost
contact metric 3-structure (g, &a, M4, g) (Kuo, [8]). From (2.7) it follows
that &1, &2, &3 are mutually orthogonal. We also have

(28) Qa(Xa Y) = g(X’ (paY) = _g(SOG«Xa Y)7 a=1,2,3.

We know that an almost contact metric structure (¢, &, 7, g) is called
a cosymplectic structure if (Blair, [3])

(2.9) Vp =0,
where V is the Riemannian connection. From (2.9) it follows that
(2.10) VE=0, Vn=0.

If all the three almost contact metric structures (¢q, 4,70, 9), a = 1,2, 3,
are cosymplectic structures, that is,

(2.11) Ve =0,

~

(2.12) V=0  VUne =0,

then the manifold M is said to have a hypercosymplectic 3-structure
(©a,€asMasg), @ =1,2,3 (cf. F. Martin Cabrera, [9]).

EXAMPLE 2.1. We construct a simple example of a hypercosymplec-
tic 3-structure in the 3-dimensional Euclidean space R3. We define
(Vas€arMay9), @ = 1,2,3 in R? by their matrices as follows:

0 01 00 0 0 10
pr=| 0 00|, p=|00 -1|, g3=|-100|,
-1 00 01 0 0 00
0 1 0
Gi=11]), &=10], &=]07,
0 0 1
m=[010], m=[100], ns=[00 1],

and
g= Ig.

A straightforward calculation shows that the above set provides a hy-
percosymplectic 3-structure on R3.
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EXAMPLE 2.2. We consider a (4m + 3)-dimensional torus T4™+3
(m>1) and let {ai1, a2, ..., Qams3} a basis for 1-forms such that
each q; is integral and closed. That is, each «; defines an element of
the first integral cohomology group so that if one does the integral of o
along any 1-cycle, then the result is an integral number. On T4 13 we
consider the metric tensor field given by

4m+3
g(XY)= > ai(X)au(Y)
i=1
and the almost contact metric 3-structure consisting of the three (1,1)
tensor fields
4m+3
0o = > (Camti ® i — € ® Cgti + omi ® s
i=1

—€tm4i @ Qem+i + €amtc @ Cdmtb — Comtb ® Udmac)

where {e1, €2, ..., €4m+3} is the orthonormal frame field dual of {a1, as,
..., 0um+3} and (a,b,c) is a cyclic permutation of (1,2, 3); the three 1
-forms

N = O4m+1, 72 = Cam42, N3 = Q4m4-3;
and the three vector fields

&1 =esmt1, &2 =esm+2, &3 = €4mys-

Then the torus T™3 contains a hypercosymplectic 3-structure (Pa)&a,
Ma, 9) ([9])-

3. Generic submanifolds

Let M be an (n+3)-dimensional submanifold of a (4m+-3)-dimension-
al manifold M endowed with an almost contact metric 3-structure (@a,
€asMa, 9), a = 1,2, 3, such that the structure vector fields &, a = 1,2,3
are tangential to M. The submanifold M is said to be a generic sub-
manifold (Bejancu, [1]) of M if ¢, (T;-M) is orthogonal to T; M, that
is, wo (T M) C TyM,a = 1,2,3. Thus we can define three distributions
Dy, 6=1,2,3 0n M by
(31) Dy:&— Dap = @o(TEM) C M, a=1,2,3, ze M.

The 1-dimensional distributions {&}, {&},{&3} are mutually orthogo-
nal and we denote by

(3.2) E={a} oLt o{é)



On generic submanifolds of manifolds equipped 325

Each hypersurface M, of a manifold M endowed with an almost con-
tact metric 3-structure (g, &4, 74, 9), @ = 1,2, 3, such that the structure
vector fields &, a = 1,2,3 are tangential to M, is a generic submanifold
of M.

THEOREM 3.1. Let M be a generic submanifold of M equipped with
an almost contact metric 3-structure (¢q, &g, e, 9), @ = 1,2, 3, such that
the structure vector fields &,, a = 1,2,3 are tangential to M. Then
(a) Dy, Dy, D3 are mutually orthogonal,

(b) D1 =D; @ Dy @ D3 is orthogonal to &.
Consequently, Dy, Do, D3, {€1},{&},{&} are mutually orthogonal.

PROOF. (a) Let Y1 € D4,Y5 € D,. By definition of Dy and Dj there
exist normal vector fields Vi, V3 such that Y7 = ¢1V4 and Yo = ¢oV5.
Then by using (2.6), (2.7), (2.8) and (2.2) we get

g(Y'l,YEZ) = 9(901V1, 902‘/2) = _g(‘/h (901 o SOQ)‘/Q)
= gV1,p3Va +m(V2)61) =0,

since ¢1 and 3(T;- M) are tangential to M. Thus D; 1 D,. Similarly we
can prove that Dy L D3 and Dy L Ds.

(b) Let Y, € Dy, a = 1,2,3. Then by (3.1) there exists a normal
vector field V, such that Y, = ¢V, and we have

9(Ya, &) = 9(0aVa, &) = —9(Va, 0ap) = 0,

since we have p,&, = 0 and @&, = &, where (a,b,¢) is a cyclic permu-
tation of (1,2,3). This completes the proof. g

Now, we denote by D the orthogonal complementary distribution to
DLo&in M.

THEOREM 3.2. Let M be a generic submanifold of M endowed with
an almost contact metric 3-structure (@q,€q,M4,9), @ = 1,2, 3, such that
the structure vector fields &, a = 1,2, 3 are tangential to M. Then the
distribution D is invariant by each g, that is

(33) .Pa (D) = D’ a= ]-a 2) 3.

PROOF. Let X € D,Y € D*. Then by using (2.8), we get
9(0aX,Y) = —g(X,0.Y) = 0.
Thus ¢, DL D+. Next, we get
9(0aX,N) = —g(X,p.N) = 0,
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which implies that @, D1TL+M. Finally, we have

9(paX, &) = —9(X, pabp) = 0,
showing that p,D1E. Hence p,D = D, that is, D is invariant by each
Pa- ]
With respect to the behavior of distributions D, to the action of ¢,
we have
(3.4) 9o (Do) = TJ.M? ¢a (Dp) = Dy,

where (a, b, ¢) is a cyclic permutation of (1,2, 3).

4. Integrability of certain distributions

4.1. Some basic results

Let M be an (n + 3)-dimensional generic submanifold of a (4m +
3)-dimensional manifold M endowed with an almost contact metric 3-
structure (¢q,&4,M4,9), @ = 1,2, 3, such that the structure vector fields
€a, a = 1,2, 3 are tangential to M. We choose a local field of orthonormal
frames {Ni,..., N} on the normal bundle 71 M, where s = codimM.
Then on the distribution D+ we can take the local field of orthonormal
frames

(41) {Xll,-~-,X15,X21,---,X237X31,---,X35},
where
(4.2) Xai =¢alNi, =123 i=12,..., s

We denote by U the projection operator of TM on to the invariant
distribution D. Then any arbitrary vector field X on M can be written
locally as follows

3 s 3
(4.3) Y=UY+Y > (wailY)Xai) + > na(Y)Es,
a=1

a=1 i=1

where wq;, a =1, 2,3 are 1-forms locally defined on M by

(4.4) wai(Y) = g(Y, Xyui).
We recall the Gauss and Weingarten formulae:
(4.5) VxY = VxY + k(X,Y),

(4.6) VxN = —AnNX + V%N,
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for all X,Y € TM, where V is the induced Riemannian connection on
M, h is the second fundamental form of M and Ay is the fundamental
tensor of Weingarten with respect to the normal vector N. It is well
known that

Applying ¢, to equation (4.3), we obtain ([1])
0¥ = @ UY +np(Y)c — 1e(Y)&

(4.8) + ) (@i(Y) Xeoi — wei(Y) Xpi — wai(Y)N;) .

i=1

If (¢a,&asNas9), a = 1,2,3 is a hypercosymplectic 3-structure, then we
have

0 = €7X‘paY - QDa%XY

= Vy (ganY +m(Y)Ee — (Y )

+ Z (wis (Y) Xei — wei(Y) Xy — wai(Y) N;) )
—pa (VXY + (X, 1)

= Vx (90aUY + nb(Y)fc - nc(Y)fb + Z (Wbi(Y)Xci - wci(Y)sz‘)>
i=1
+3  (Wai(Y)ANX) = @aUVXY — (VXY )& + ne(VxY)&
=1

= " (@hi(VxY) Xei — wei(VXY) Xii) — 0ah(X,Y)

i=1

+h (X, 0aUY +mp(Y)Ee — ne(Y )b

+ Z (wri(Y) Xei — wei(Y) Xpi) )

=1
s

- Z((VXwai)Y)Ni - Z (wai(Y)V)i(Ni) :
i=1

=1
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Equating normal parts we get
0 = h (Xa (anY) + nb(Y)h (Xa 60) - nC(Y)h“ (Xa gb)

)
+ 3 (WY (X, Xei) — wei(Y)R (X, Xii)
i=1
(4.9) ~ (Vxwai) Y)N; — wai(Y) VM) -
LEMMA 4.1. Let M be a submanifold of M equipped with a hyper-

cosymplectic 3-structure (¢q,&a,Ma,9), @ = 1,2,3, such that £, € TM,
a=1,2,3. Then

(4.10) : Vxéa =0, X eTM,
(4.11) MX,&) =0, XeTM,
(4.12) ANX €&, NeT*M X eTM,
(4.13) ANE, =0, NeT M.
PROOF. By using (2.12) and (4.5), for all X € TM we get
(4.14) Vix€a+ (X, &) = Vx€, = 0.

Equating tangential and normal parts in (4.14) we get (4.10) and (4.11)
respectively. In view of (4.11) and (4.7), we get

0= g(h'(X, ga)aN) = g(ANXa §a) =49 (ANgaaX) )
which gives (4.12) and (4.13). O

LEMMA 4.2. Let M be a generic submanifold of M equipped with a
hypercosymplectic 3-structure (¢q,&q,Ma,9), @ = 1,2,3. Then we have

(415) 9(IX,&),Y) =g (V.6 X) =0, X eDYeD &¢,
(416) g(X,&],Y)=0, X €Dy Y € D,&De® {6} @ {&c},
(417) g(IX.&],6) =9 (IV.&),&) =0, X €D, ¥ €D a#b.
PROOF. By using (4.10) for all X e D and Y L X, we get
g(1X,6],Y) = g(Vxéa—Ve,X.Y)

= g(xXY) -9 (Ve X,Y) =g (X, VeY).
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Since D is invariant by each ¢, and ¢, is an isomorphism on D, therefore
X = pyZ,, for some Z, € D, a =1,2,3, in the above equation we get

9(X.6),Y) = 9(X,VY) =g (a2, Ve,Y)
= g <Za _Waﬁgay) =g (Z7 _6§G(PCLY) .
In particular, if Y € D, & {&,}, then from the above equation, we get
g ([Xa €a] ’Y) =g (Z> Anpana) =g (h (Z, ﬁa) ’ SOaY) =0,

which implies the first equality of (4.15). Similarly we can prove other
equalities. O

LEMMA 4.3. Let M be a generic submanifold of M endowed with a
hypercosymplectic 3-structure (¢g,&q,Ma,9), @ = 1,2,3. Then we have

(4.18) ApoxY = Ap,y X X,Y € D,
(4.19) g([X,Y],&) =0, X, Y1&,.
Proor. For X,Y € D,, Z € TM, we have

9(4xY,2) = 9(h(Y,2),0X) =g (VY 0uX)

= ( ©a (VZY) X) =9(—‘~7Z<PaY,X)
g(A ‘PaYZ7X)_g(A<PaYX7Z7)?
(2.

where (4.7), (4.5), (2.8), (2.11) have been used. This proves (4.18).

Next, for X,Y 1L£,, we have
9 (VxVi) = =g (Vxa,Y) =0,
which proves (4.19). O
4.2. The distribution £

LEMMA 4.4. For a manifold with a hypercosymplectic 3-structure
(Soaa§a7 "7a7g), we have
(4.20) [a: &) =0, a#b.

Consequently, the distributions {£,} spanned by &, and &, a # b, are
integrable.

Proor. We have
(€0, &) = Ve & — %gbfa =0-0=0.
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THEOREM 4.5. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (¢q,&4,74,9), a = 1,2,3. Then the
distribution £ is integrable.

PROOF. In view of Lemma 4.4, the proof follows immediately. N
4.3. The distributions D, D1, and D @ D+

THEOREM 4.6. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (¢g,&a,M4,9), @ = 1,2,3. Then the
distribution D @ D™ is integrable.

PROOF. Let X,Y € D@ D'. Then we have
g([X,Y],&) =9(VxY - VyX,&) = —g(Y,Vx&) +9(X,Vy&) =0,
where Lemma 4.1 has been used. So [X,Y] € D@ D*. Q
Unlike in the case of Sasakian 3-structure, where D and D1 are not

integrable, in view of Theorem 4.6, we can state the following two the-
orems.

THEOREM 4.7. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (pq4,&4,7M4,9), @ = 1,2,3. Then the
distribution D is integrable if and only if

9([X,Y],2)=0, X,YeD, ZeD

THEOREM 4.8. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (¢q,&a,Ma,9), a = 1,2,3. Then the
distribution D is integrable if and only if

9([X,Y],2) =0, X, YeDt ZeD.
4.4. The distribution D@ £

THEOREM 4.9. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (pq,&q,M4,9), @ = 1,2,3. Then the
following statements are equivalent:
(a) the generic submanifold M is D-geodesic.
(b) the distribution D @ £ is integrable.
(c) the second fundamental form h of the immersion of M satisfies

(4.21) h(X, YY) = h(pX,Y), a=1,2,3, X, YeD.
PROOF. Let the generic submanifold M be D-geodesic, that is,
(4.22) X, Y) =0, X,YeD.
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In view of (4.15) and Theorem 4.5, to prove the integrability of D & &
it is sufficient to prove that [X,Y] € D& £ for all X,Y € D. Since
the differential forms wy; and n,, a =1,2,3; ¢ =1,2,...s, vanish on D,
using (4.22) in (4.9), we have for all X,Y € D:

0=—(Vxwg)Y or waei (VxY) =0.
Thus we get
9([X, Y], Xai) = wai (IX, Y]) = wai (VxY) ~ was (Vy X) = 0.
Hence [X,Y] € D& € for all X,Y € D. This proves (a) = (b).

Next, we assume that the distribution D & £ is integrable. Then for
all X,Y € D we obtain

0=yg ([Xa Y] 7Xai) = Wqj (VXY) — Wai (VyX) .
Hence using (4.9) we get for each a =1,2,3
s s
h(-Xa QO(LY) = — Zwm’ (VXY) Ni = - Zwai (VYX) N’i = h(Y, (an),

i=1 i=1
which proves (b) = (c¢). In last, we show that (c) = (a). We assume
(c). Then, for all X, Y € D, we get

h(p3X,Y) = h(X,3Y) = h(X, (¢1 0 p2)Y)
= h((p20¢1)X,Y) = —h(psX,Y).

Thus h(psX,Y) = 0. This implies that the generic submanifold M is
D-geodesic because 3 is an automorphism on D. O

4.5. The distributions D, and D, @ {£,}

THEOREM 4.10. Let M be a generic submanifold of M equipped
with a hypercosymplectic 3-structure (©q,&a,Ma,9), @ = 1,2,3. Then
the distributions D, are integrable.

PROOF. For X,Y € D,, we get
0=Vx@a¥ —¢aVxY = —Ag,y X +Vx0aY — 00 (VxY) ~9ah (X,Y),
which in view of the equation (4.18) gives
¢a[X,Y] = VxpY — VypaX.
In view of (4.19) we get
—[X, Y] = @2 [X,Y] = pa (VE@aY - ViwaX) €Dy,
which makes D, integrable. O
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In view of the above theorem and the equation (4.16), we get the
following theorem.

THEOREM 4.11. Let M be a generic submanifold of M equipped
with a hypercosymplectic 3-structure (©g4,&2,74,9), ¢ = 1,2,3. Then
the distributions D, @ {£,} are integrable.

4.6. The distribution D+ @ €

THEOREM 4.12. Let M be a generic submanifold of M equipped
with a hypercosymplectic 3-structure (¢q,&a,Ma,9), @ = 1,2,3. Then
the following statements are equivalent:

(a) the distribution D+ @ £ is integrable.
(b) the generic submanifold M is (D, ’DL)-geodesic, that is,

(4.23) MX,Y)=0, XeDY eD

PROOF. Let (a,b,c) be a cyclic permutation of (1,2,3). Then, for all
U,V € T*M and X € D, we obtain

9 ([ealU, bV}, e X)
=g (V%U%V - %gobv(ana peX )

= 9 (e (Voo ) - ¢ (VeV}, X)
= 9 (Voweeral. X) - g (VpveernV, X)

= g (vmV (eoU +1ma (U) &), X) — g (Vpou (=9aV +m (V) &), X)
= g (v(,oaUSDaV + v(pr(pra X) .

Taking in to account the equation (4.15) and Theorem 4.10, we conclude
that the distribution D+@F is integrable if and only if for all U,V €
T*M and X €D

(4.24) 9 (Ve,uplV, X) =0, a=1,2,3.
On the other hand, we have for all U,V € T+ M and X € D

9 (VyupaV, X) = g (%(,U%V,X ) =g (cpa%aUsoaV, o X )
= 9 (Ve (-V +m (V) &), 0uX)

= g <_§<anV7 SOaX) =g (AV</7aU: ‘PaX) .

or

(4'25) g (vsoaU‘Pavy X) =49 (h (SDaUa SOaX) s V) .
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Thus from (4.24) and (4.25) the two statements are equivalent. O

5. Geometry of leaves

In this section we obtain sufficient condition for leaves of distribution
D@ E (resp. DD E) to be totally geodesic immersed in M (resp. M).

THEOREM 5.1. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (g, &a,Ma,9), @ = 1,2,3. If the distri-
bution D & € is integrable then each leaf of D & € is totally geodesic

immersed in M.

PROOF. Let M’ be a leaf of D@ E. We denote by A’ the second fun-
damental form of the immersion of M’ in M and by V' the Riemannian
connection induced by V on M’. Then we get
(5.1) VxY =V4Y +H(X)Y), X, YeTM.

Since D @ £ is invariant by each ¢,, a = 1,2,3, therefore from (5.1)
taking account of (2.11), we obtain
W(X,0Y) = Vxg¥ — VipY =0, VxY — VoY
(5.2) = 0 VY + b (X,Y) = Viyp,Y.
Taking normal parts to TM' in (5.2), we get
W(X,p3Y) = @3h/(X,Y) = (p1092)l(X,Y)
= @il (X, 2Y) = K (01X, p2Y)
= h/((QOZ o WI)X’ Y) = —h/((ng, Y)
—h (X’ 903Y)
Hence we get
(5.3) K(X,p3Y) =0, X, YeDo€.

Since 3 is an automorphism of D & {1} @ {&;} from (5.3) it follows
that

(5.4) h(X,Z) =0, XeDoE ZeDa{&} D {&)

Next, (5.3) is valid if we replace @3 by @1, ¢2. Thus we get

(5.5) h'(X, &) = (X, p1&) =0, XeDa&.

By (5.4) and (5.5) it follows that M’ is totally geodesic immersed in

—~

M. W
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THEOREM 5.2. Let M be a generic submanifold of M equipped with
a hypercosymplectic 3-structure (¢a,&a,M4,9), 6 = 1,2,3. If the distri-
bution D+ @ £ is integrable then each leaf of D+ @ & is totally geodesic
immersed in M.

PROOF. Let M* be a leaf of D+ @ £. We denote by A* the second
fundamental form of the immersion of M* in M. By using (2.8), (2.11)
and Gauss and Weingarten formulae we get for X € D+ @ &, Z € D,
V € T+ M we have

9(VxpaV,Z) = g (eXSDaVa z) =g (wﬁxV, Z) =—g (ﬁxV, #aZ)
= g(AvX,p.Z) =g (h(X,0aZ),V).

Therefore, in view of Theorem 4.12 and Lemma 4.1, we get

(5.6) 9(VxpV,Z) =0, a=1,2,3

foral X e DL @&, Z € D, V € TEM. On the other hand for X €
DL @&, Z € D we get

(5.7) 9(Vxta,2) = g (Vxéa, Z) = 0.

Hence from (5.6) and (5.7) by using the Gauss formula for the immersion
of M* in M we obtain

g(h*(X,Y),Z2)=0, X, YeD @& ZeD.
Thus each leaf M* of D1 @ £ is totally geodesic immersed in M. O
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