• Title/Summary/Keyword: contact fatigue strength

Search Result 64, Processing Time 0.025 seconds

Strength Degradation from Contact Fatigue in Self-toughened Glass-ceramics

  • Lee, Kee Sung;Kim, Do Kyung;Woo, Sang Kuk;Han, Moon Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • We investigated strength degradations from cyclic contact fatigue in self-toughened glass-ceramics. Hertzian indentation was used to induce cyclic contact load. Dynamic fatigue was also performed with changing stress rates from 0.01 to 10000 MPa/sec. After that, strength data and fracture origins were analysed. As the number of contact cycles increased or stressing rate decreased, severe strength degradation occurred by as much as 50% because of radial cracks developed from microcrack coalescence.

  • PDF

The Development of High Contact Fatigue Strength P/M Sprocket for the Silent Chain System

  • Yamanishi, Yuuji;Tsutsui, Tadayuki;Ishii, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.142-143
    • /
    • 2006
  • Recently, automotive engines have changed to the silent chain system in order to reduce noise and to improve reliability. High contact fatigue strength is needed for the sprockets of silent chain system. As a result, a high-contact-fatigue-strength P/M material was developed using the technology of surface rolling, which densifies the surface layer of sintered parts. It was established that the contact fatigue strength of the developed material was a great improvement over that of the conventionally used sintered material.

  • PDF

The Influence of Indentation on Rolling Contact Fatigue (구름 접촉피로에 미치는 압혼의 영향)

  • 이동엽;이한영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.74-79
    • /
    • 1997
  • Most of the results of recent research for the influence of indentation on rolling contact fatigue has been carried out with high strength material under the point contact. The plastic lug around the indent also has been known as a source of stress concentration. This study is undertaken to analyze the influence of indentation on rolling contact fatigue with low strength material under the line contact. The results in this study show that the plastic flow around indentation by rolling friction has a major influence, differed from the results of high strength material. And the change of residual stress and half-value breadth measured to the failure by X-ray diffraction can be identified to predict the rolling contact fatigue life of indented materials.

  • PDF

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

Design Method to Reduce the Press-Fitted Assembly Dama (압입축의 파손 저감을 위한 설계 방법에 대한 연구)

  • Byon, Sung-Kwang;Choi, Ha-Young;Lee, Dong-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.128-134
    • /
    • 2021
  • A press-fitted shaft is an essential part used in industrial machines, and it is generally used to transmit large quantities of power. Very high contact pressure occurs at the end parts of the contact between the shaft and boss, which are press-fitted shaft components. Such contact pressure not only damages the contact surface of a press-fitted shaft but also reduces its fatigue strength. To improve a press-fitted shaft's fatigue strength, the contact pressure on the contact surface, which directly affects the fatigue strength, should be minimized. Thus, in this study, the design configuration optimization of the end part of the boss was based on the approximate optimization method and was aimed at minimizing the contact pressure at the end of a press-fitted shaft. Comparison of the contact pressure and the contact stress of a conventional press-fitted shaft with those of the optimized press-fitted shaft showed that the boss design of the optimized press-fitted shaft effectively improved the fatigue life.

Hertzian contact fatigue of dental ceramic implant abutment (인공치아용 세라믹 임플란트 상부구조물의 반복하중 피로특성)

  • Lee Deuk Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.199-203
    • /
    • 2004
  • Feasibility of 3Y-TZP for dental implant abutment was evaluated under the Hertzian cyclic fatigue by examining the extent of the indentation damage and strength degradation. Fatigue test was conducted at contact loads of 500 to 3000 N and up to $10^6$ cycles in exact in vitro environments. At 500 N, no strength degradation and crack generation was observed up to $5\times10^5$ contact cycles. As load rose, the dramatic reduction in strength was observed when the damage transition from ring to radial crack occurred. The. extent of strength degradation was more pronounced in vitro environment probably due to chemical corrosion of artificial saliva through cracks introduced during large numbers of contacts.

Analysis of the Rolling Contact Fatigue of the Shot Peened Ball Bearing by X-ray Diffraction (X선회절에 의한 SHOT PEENING처리 구름베어링의 구름접촉 피로해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 1997
  • The shot peening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shot peening treatment for inner race of ball bearing on the rolling contact fatigue. Shot peening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shot peening treatment. This effect was found to be more pronounced to the full hardened bearing. These facts might be due to the generation of compressive residual stress and the strain hardening of surface layer by shot peening treatment. The failure of the shot peened bearing were presumed to initiate at surface.

In-vitro Hertzian Fatigue Behavior of Zirconia/Alumina Composites (지르코니아/알루미나 복합체의 In-vitro Hertzian 피로거동)

  • Lee, Deuk-Yong;Park, Il-Seok;Kim, Dae-Joon;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • The degree of the indentation damage and strength degradation for 3Y-TZP ceramics and (Y,Nb)-TZP/$Al_2O_3$ dental implant composites was investigated under the Hertzian cyclic fatigue. Fatigue tests were conducted at contact loads of 500 to 3000 N and up to $10^6$ cycles in exact in vitro environments. At 500 N, no strength degradation and crack generation was observed up to $5{\times}10^5$ contact cycles. Fatigue properties of 3Y-TZP ceramics was superior to (Y,Nb)-TZP/ㅍ composites due to stress relief caused by the phase transformation from tettagonal to monoclinic phase. As contact load increased, the drastic reduction in strength was found when the damage transition from ring to radial crack occurred. The extent of strength degradation was more pronounced in vitro environments probably due to chemical corrosion of artificial saliva through cracks introduced during large numbers of contacts.

Analysis of rolling contact fatigue of shotpeened ball bearing by X-ray diffraction (X선회절에 의한 SHOTPEENING처리 구름베어링의 구름접촉피로해석)

  • 이한영;이동엽
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.207-212
    • /
    • 1996
  • The shotpeening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shotpeening treatment for inner race of ball bearing on the roiling contact fatigue. Shotpeening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shotpeening treatment. This effect was found to be more pronounced to the full hardened bearing.

  • PDF

Glass-alumina Composites Prepared by Melt Infi1tration: III. In-vitro Fatigue Behavior (용융침투법으로 제조한 유리-알루미나 복합체: III. In-vitro 피로거동)

  • 이득용;이세종;박일석;장주웅;김병수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.662-666
    • /
    • 2003
  • Hertzian cyclic fatigue properties of the alumina-glass dental ceramics were evaluated in exact in vitro environment at contact loads from 200 N to 1000 N and up to 10$\^$6/ cycles to investigate the indentation damage and strength degradation. At 200 N, no strength degradation and crack generation was observed up to 10$\^$6/ contact cycles. As load increased from 200 N to 1000 N, the drastic reduction in strength was found when the damage transition from ring to radial crack occurred. The extent of strength degradation was more pronounced in vitro environments probably due to chemical reaction of artificial saliva with glass phase through radial cracks introduced during large numbers of contacts.