• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.034 seconds

A Study on Ammonia Formation with Nitrogen Impurity at a Natural Gas Steam Reforming Catalytic Process (소량의 질소를 포함한 천연가스 수증기 개질 반응에서 GHSV 변화에 따른 암모니아 생성 반응에 관한 연구)

  • KIM, CHUL-MIN;PARK, SANG-HYOUN;LEE, JUHAN;LEE, SANGYONG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.601-607
    • /
    • 2019
  • Ammonia would be formed in natural gas containing small amount of nitrogen reforming process in the process natural gas, which might damage the Pt catalyst and Prox catalyst. In the article, the effect of nitrogen contents on the formation of ammonia in the reforming process has been studied. In the experiments, Ru based and Ni based catalysts were used and the concentration of ammonia in the reformate gas at various gas hourly space velocity was measured. Experimental result shows that relatively higher ammonia concentration was measured with Ru based catalyst than with Ni based catalyst. It also shows that the concentration of ammonia increased rapidly after most of the methane converted into hydrogen. Based on the experimental results to reduce ammonia concentration it might be better to finish methane conversion at the exit position of the reforming reactor to minimize the contact time of catalyst and nitrogen with high concentration of hydrogen.

Effect of Pressing Force Applied to a Rotor on Revolution Characteristics in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향)

  • 김영균;김진수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • The ultrasonic motor have recently begun to be used for certain unique practical utilizations in the fields of industrial medical consumer and automotive applications. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The metal and ceramic composite component was used as the stator element to generate ultrasonic vibrations. The ultrasonic motor used here was the windmill type ultrasonic motor operated by single-phase AC source. The windmill type ultrasonic motors has only three components; a stator element of two windmill shape slotted metal endcaps a rotor and a bearing. In this paper a prototype motor with 11.35 mm diameter was fabricated then relationship between the pressing force applied to a rotor and the rotation characteristic of windmill type ultrasonic motor are investigated when stator’s slots was changed from 4, 6, 8 and thickness changed from 0.15, 0.20 mm, respectively. Optimum pressing force applied to a rotor in the six stators was 1.2 mN.

  • PDF

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

Adhesion of Cu on Polycarbonate with the Condition of Surface Modification and DC-Bias Sputtering Deposition (폴리카보네이트에서의 표면개질 조건과 DC-Bias Sputtering 증착에 따른 Cu 밀착성)

  • 배길상;엄준선;이인선;김상호;고영배;김동원
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The enhancement of adhesion for Cu film on polycarbonate (PC) surface with the $Ar/O_2$ gas plasma treatment and dc-bias sputtering was studied. The plasma treatment with this reactive mixture changes the chemical property of PC surface into hydrophllic one, which is shown by the variation of contact angle with surface modification. The micro surface roughness that also gives the high adhesive environment is increased by the $Ar/O_2$ gas plasma treatment. These results were observed distinctly from the atomic force microscopy (AFM). The negative substrate dc-bias effect for the Cu adhesion on PC was also investifated. Accelerated $Ar^{+}$ lons in sheath area of anode bombard the bare surface of PC during initial stage of dc bias sputtering. PC substrate. therefore, has severe roughen and hydrophilic surface due to the physical etching process with more activated functional group. As dc-bias sputtering process proceeds, morphology of Cu film shows better step coverage and dense layer. The results of peel test show the evidence of superiority of bias sputtering for the adhesion between metal Cu and PC.C.

Properties of Recessed Polysilicon/Silicon($n^{+}$) - Silicon(P) Junction with Process Condition (공정조건에 따른 함몰된 다결정실리콘/실리콘($n^{+}$) - 실리콘(p) 접합의 특성)

  • 이종호;최우성;박춘배;이종덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.152-153
    • /
    • 1994
  • A recessed $n^{+}$-p junction diode with the serf-aligned structure is proposed and fabricated by using the polysilicon as an $n^{+}$ diffusion source. The diode structure can be applicable to the emitter-base formation of high performance bipolar device and the $n^{+}$ polysilicon emitter has an important effect on the device characteristics. The considered parameters for the polysilicon formation are the deposition condition $As^{+}$ dose for the doping of the polysilicon, and the annealing using RTP system. The vertical depth profiles of the fabricated diode are obtained by SIMS. The eleotrical characteristics are analyzed in trims of the ideality factor of diode (n), contact resistance arid reverse leakage current. The $As_{+}$ dose for the formation of good junction is current. The $As^{+}$ dose for the formation of goodjunctions is about 1∼2${\times}$$10^{16}$$cm^{-2}$ at given RTA condition ($1100^{\circ}C$, 10 sec). The $n^{+}$-p structure is successfully applied to the self-aligned bipolar device adopting a single polysilicon technology.

  • PDF

Adhesion and Electrical Performance by Plasma Treatment on Semiconductive-Insulation Interface Layer of Silicone Rubber (실리콘 고무의 플라즈마 표면처리된 반도전-절연계면 처리에 따른 접착특성과 절연성능)

  • Hwang, Sun-Mook;Lee, Ki-Taek;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and AFM. Adhesion was obtained from T-peel tests of semiconductive layer having different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the the creation of O-H and C=O. It is observed that adhesion performance was determined by not surface energy but roughness level of silicone surface. It is found that ac dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone (맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

Activated Carbon Performance for the Treatment of Diesel-Derived Polycyclic Aromatic Hydrocarbons

  • Choi, Yongju;Luthy, Richard G.
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • This study assessed the performance of activated carbon (AC) amendment to treat polycyclic aromatic hydrocarbons (PAHs) including both parent- and alkylated-moieties in sediment impacted by diesel. A field-collected, diesel-impacted sediment with a NAPL content of 1% was used for the study. No. 2 diesel fuel is weathered by heating at $70^{\circ}C$ for 4 days to obtain a weathered diesel sample having C3-naphthalenes to C2-phenanthrenes/anthracenes (N2/P3) ratio similar to the original sediment. The sediment samples spiked with the weathered diesel to obtain non-aqueous phase liquid (NAPL) contents of 1, 5 and 10% were contacted with AC with a dose of 5% as sediment dry weight for 1 month. By the AC-sediment contact, the freely-dissolved equilibrium concentrations were substantially reduced. Even for sediment with 10% NAPL content, the reductions in the freely-dissolved concentrations were 92% and 75% for total parent-and alkylated-PAHs, respectively. The effect of NAPL contents on the performance of AC was negligible for parent-PAHs, while for alkylated-PAHs, a slightly reduced AC performance was observed. The results suggest that the AC amendment can be an effective option for the treatment of petroleum-impacted sediment with relatively high NAPL contents.

External Store Separation Analysis Using Moving and Deforming Mesh Method (이동변형격자 기법을 활용한 외부장착물 분리운동 해석)

  • Ahn, Byeong Hui;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.9-20
    • /
    • 2019
  • A military aircraft generally includes external stores such as fuel tanks or external arming, depending on the purpose of the operation. When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. This can cause damage to the aircraft and endanger the life of the crew. In this study, time accurate computational fluid dynamics (CFD) with dynamic moving grid (moving and deformable mesh, MDM) technique has been used to accurately calculate store trajectories. For the verification of the present numerical approach, a wind tunnel test model for the wing-pylon-finned store configuration has been considered and analyzed. The comparison results for the ejected store trajectories between the present numerical analysis and the wind tunnel test data at the Mach number of 0.95 and 1.2 are presented. It is also importantly shown that the numerical parameter of MDM technique gives significant effect for the calculated store trajectory in the low-supersonic flow such as Mach 1.2.

A Study on the Estimation of Separation Forces of a Power Steering Hose Assembly (동력조향장치 호스 조립품의 이탈력 추정에 관한 연구)

  • Kim Hyungje;Kim Byungtak;Yoon Moonchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.190-196
    • /
    • 2005
  • The power steering hose assembly is usually manufactured through the swaging process, which is conducted to connect a hose with metal fittings. In this process the hose is inserted into metal components, the sleeve and the nipple, and compressed in the radial direction by the jaws to clamp the hose with metal components. In case that the clamping force is small, the oil in the hose can leak locally under the severe operating conditions. To confirm the clamping force requirements, the measurement of separation force in longitudinal direction of the hose is usually performed. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the separation fDrce. The results interpretations are ffcused on the inner rubber component, and also a formula is proposed to estimate the separation farces with respect to friction coefficients.